• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 15
  • 13
  • 7
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 84
  • 31
  • 18
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Experimental Investigation on Acoustic Characteristics of Convergent Orifices in Bias Flow

Maxted, Katsuo J. 15 October 2015 (has links)
No description available.
22

Breakup characteristics of a liquid jet in subsonic crossflow

Gopala, Yogish 18 May 2012 (has links)
This thesis describes an experimental investigation of the breakup processes involved in the formation of a spray created by a liquid jet injected into a gaseous crossflow. This work is motivated by the utilization of this method to inject fuel in combustors and afterburners of airplane engines. This study aims to develop better understanding of the spray breakup processes and provide better experimental inputs to improve the fidelity of numerical models. This work adresses two key research areas: determining the time required for a liquid column to break up in the crossflow (i.e., primary breakup time) and the effect of injector geometry on spray properties. A new diagnostic technique, the liquid jet light guiding technique that utilizes ability of the liquid jet to act as a waveguide for laser light was developed to determine the location where the liquid column breaks up, in order to obtain the primary breakup time. This study found that the liquid jet Reynolds number was an important factor that governed the primary breakup time and improved the existing correlation. Optical diagnostic techniques such as Phase Doppler Particle Analyzer, Liquid Jet Light Guiding Technique, Particle Image Velocimetry and Imaging techniques were employed to measure the spray properties that include spray penetration, droplet sizes and velocities, velocity field on the surface of the liquid jet and the location of the primary breakup time. These properties were measured for two injectors: one with a sharp transition and the other with a smooth transition. It was found that the spray created by the injector with a sharp transition forms large irregular structures while one with smooth transition produces a smooth liquid jet. The spray transition creates a spray that penetrates deeper into the crossflow, breakup up earlier and produces larger droplets. Additionally, this study reports the phenomenon of the liquid jet splitting into two or more jets in sprays created by the injector with a smooth transition.
23

Vliv drsnosti povrchu stěny na součinitel výtoku / Influence of the wall roughness on discharge coefficient of orifice

Jinek, Josef January 2015 (has links)
This thesis deals with the influence of the wall roughness on discharge coefficient of sharp-edged circular bottom orifice. It supposed to verify, summarize and extend knowledge of orifice discharge. Author of this thesis determine a discharge coefficient by measurement. Values of discharge coefficient were measured for roughness of the wall represented by different diameters of grains and these values were compared with available values published in specialized bibliography by different scientists. At the thesis end was made a summary evaluation.
24

Numerical modeling of two-phase flashing propellant flow inside the twin-orifice system of pressurized metered dose inhalers

Shaik, Abdul Qaiyum January 2010 (has links)
Pressurized metered-dose inhalers (pMDIs) are the most widely-prescribed inhaler devices for therapeutic aerosol delivery in the treatment of lung diseases. In spite of its undoubted therapeutic and commercial success, the propellant flow mechanics and aerosol formation by the pMDIs is poorly understood. The process involves a complex transient cavitating turbulent fluid that flashes into rapidly evaporating droplets, but details remain elusive, partly due to the difficulty of performing experiments at the small length scales and short time scales. The objective of the current work is the development of a numerical model to predict the internal flow conditions (pressure, temperature, velocity, void fraction, quality, etc.) and provide deeper insight into the atomization process and fluid mechanics involved in the twin-orifice of pMDIs. The main focus is propellant metastability, which has been identified by several past authors as a key element that is missing in accounts of pMDI performance. First the flashing propellant flow through single orifice systems (both long and short capillary tubes) was investigated using three different models : homogeneous equilibrium model (HEM), delayed equilibrium model (DEM) and improved delayed equilibrium model (IDEM). Both, the pure propellants and the propellant mixtures were used as working fluid. The numerical results were compared with the experimental data. For long capillary tubes the three models gave reasonable predictions, but the present results showed that DEM predicts the mass flow rate well for pure propellants and IDEM predicts the mass flow rate well for propellant mixtures. For short capillary tubes, the present results showed that DEM predicts the mass flow rate and pressure distribution along the short tube better compared to HEM and IDEM. The geometry of the twin-orifice system of a pMDI is complex and involves several singularities (sudden enlargements and sudden contractions). Various assumptions were made to evaluate their effect on the vaporisation process and to evaluate the flow variables after the shock at the exit of the spray orifice when the flow is choked. Also, three different propellant flow regimes were explored at the inlet of the valve orifice. A specific combination of assumptions, which offers good agreement with the experimental data was selected for further computations. Numerical investigations were carried out using delayed equilibrium model (DEM) with these new assumptions to validate the two-phase metastable flow through twin-orifice systems with continuous flows of various propellants studied previously by Fletcher (1975) and Clark (1991). A new correlation was developed for the coefficient in the relaxation equation. Along with this correlation a constant coefficient was used in the relaxation equation to model the metastability. Both the coefficients showed good agreement against the Fletcher's experimental data. The comparison with the Clark s experimental data showed that the new correlation coefficient predicted the mass flow rate well in compare to that of the constant coefficient, but over predicted the expansion chamber pressure. The DEM with both the coefficients for continuous discharge flows were applied to investigate the quasi-steady flashing flow inside the metered discharge flows at various time instants. The DEM results were compared with the Clark s metered discharge experimental data and the well established homogeneous equilibrium model (HEM). The comparison between the HEM and DEM with Clark s (1991) experimental data showed that the DEM predicted the mass flow well in compare to that of HEM. Moreover, both the models underpredicted the expansion chamber pressure and temperature. The findings of the present thesis have given a better understanding of the role played by the propellant metastability inside the twin-orifice system of pMDIs. Also, these have provided detailed knowledge of thermodynamic state, void fraction and critical velocity of the propellant at the spray orifice exit, which are essential step towards the development of improved atomisation models. Improved understanding of the fluid mechanics of pMDIs will contribute to the development of next-generation pMDI devices with higher treatment efficacy, capable of delivering a wider range of therapeutic agents including novel therapies based around.
25

[en] DROPLET BREAK-UP IN A FLOW THROUGH AN ORIFICE / [pt] QUEBRA DE GOTA NO ESCOAMENTO ATRAVÉS DE UM ORIFÍCIO

SERGIO PAULO GOMES PINHO 13 March 2015 (has links)
[pt] Na indústria do petróleo, durante a produção de um campo, é muito utilizada a injeção da água do mar para manutenção da pressão do reservatório. Com a injeção, há o aumento da fração de água no fluido produzido formando assim uma emulsão com uma determinada distribuição do tamanho de gotas. No sistema de produção, esta mistura sofre variações de pressão e temperatura que impactam na distribuição do tamanho de gotas da emulsão. As mudanças mais significativas nestes parâmetros ocorrem nos chokes instalados na chegada à planta de processo. O conhecimento desta distribuição é importante, pois influencia diretamente no dimensionamento dos separadores que serão instalados na plataforma, no caso offshore. O parâmetro considerado como o que melhor descrevia o processo de quebra de gotas era a potência dissipada no orifício. Nos experimentos desenvolvidos para avaliar a quebra de gotas nos chokes, foi observado que este termo possuía algumas limitações e um novo ajuste foi proposto para atender aos valores medidos. Nos testes foram utilizados dois tipos de óleos e diferentes orifícios que geraram os dados necessários para elaborar uma nova abordagem, onde a queda de pressão medida apresentou a melhor relação com os diâmetros das gotas após o orifício. Posteriormente, o efeito da viscosidade foi adicionado para que houvesse uma relação válida para ambos os óleos utilizados, tornando assim o modelo de quebra mais abrangente. / [en] In the oil industry, during an oilfield development, the sea water injection is largely used to maintain the reservoir pressure. As a result of this injection, there is the increase of the water fraction in the produced fluid, forming an emulsion with a determined droplet size distribution. In the production system, this mixture flows under different conditions of pressure and temperature that impact the emulsion droplet size distribution. The most meaningful changes of these conditions occur in the chokes that are installed at the process plant arrival. The knowledge of the droplet size distribution is important, because it impacts the sizing of the separators that will be installed at the platform, in an offshore scenario. The parameter that was considered as the most appropriate to describe the droplet break-up process was the energy dissipation rate. During the experiments performed to evaluate the droplet break-up in the chokes, it was observed that this parameter had some limitations and a new adjustment was proposed to fit with the measured values. In the tests, two oils with different viscosities were used while varying orifices characteristics to obtain the needed data to elaborate a new approach. Thus, it was found that the measured pressure drop through the restriction presented the best relation with the droplets diameters measured downstream the orifice. After this, the effect of the oil viscosity was also added to the model so to create a correlation valid for both tested oils. In this way, the break-up model proposed would be more complete and useful for different conditions.
26

Open Issues in Control ofAutomotive R744 Air-ConditioningSystems

Karim, Sanaz January 2007 (has links)
In this thesis, one of the current control algorithms for the R744 cycle, which tries tooptimize the performance of the system by two SISO control loops, is compared to acost-effective system with just one actuator. The operation of a key component of thissystem, a two stage orifice expansion valve is examined in a range of typical climateconditions. One alternative control loop for this system, which has been proposed byBehr group, is also scrutinized.The simulation results affirm the preference of using two control-loops instead of oneloop, but refute advantages of the Behr alternate control approach against one-loopcontrol. As far as the economic considerations of the A/C unit are concerned, usinga two-stage orifice expansion valve is desired by the automotive industry, thus basedon the experiment results, an improved logic for control of this system is proposed.In the second part, it is investigated whether the one-actuator control approach isapplicable to a system consisting of two parallel evaporators to allow passengers tocontrol different climate zones. The simulation results show that in the case of usinga two-stage orifice valve for the front evaporator and a fixed expansion valve forthe rear one, a proper distribution of the cooling power between the front and rearcompartment is possible for a broad range of climate conditions.
27

The seasonal trend and characteristics of heavy metals in atmospheric particulates in Nantzu Export Processing Zone

Chang, Hung-Tse 15 August 2012 (has links)
To characterize the size distributions, concentrations and sources of heavy metal associated with suspended particles, a total of 12 months of sampling periods were taken by Micro-Orifice Uniform Deposit Impactor (MOUDI) in the Nantzu Export Processing Zone from January to December 2011, The concentrations of suspended particles ranged from 54.7 to 203 £gg/m3. Both autumn and winter had significantly higher levels of suspended particles than in spring and summer. The mass concentrations of fine particles accounted for ~50% of the mass concentrations of suspended particles. The mass concentrations of PM2.5 accounted for 50.2-70% of the mass concentrations of PM10. The mass concentrations of PM1 accounted for 24-38.3% of the mass concentrations of PM10. These results indicated that fine particles dominated in atmospheric particulates in Nanzih Export Processing Zone. In addition, among the PM10, PM2.5 and PM1, significant correlations were found. The crustal elements (Al, Fe, Ca, Mg, K and Na) and sulfate are dominant during the sampling periods, which accounting for ~95% of the total concentrations. The crustal elements were observed mainly in coarse particles, while sulfate was found mainly in fine particles. The concentrations of all crustal elements decreased in summer could be attributed to the meteorological conditions and chemical mechanism. By using the enrichment factor (EF) to distinguish the sources of heavy metals in PM10, PM2.5 and the results showed that EF values of crustal elements in PM10 ranged from 1 to 10, suggesting PM10 might come from the resuspension of soil and road dust. In addition, Pb, Zn, As, Se, Mo, Sb and sulfate were observed at higher EF values in both PM2.5 and PM1, indicating the influence of anthropogenic emissions in fine particles. The results from Pearson¡¦s correlations indicated that PM10 in the Nantzu Processing Zone were mainly from the resuspension of soil and road dust, while fine particles (PM2.5 and PM1) may be from the traffic emissions and petrochemical industry in Nanzih and Renwu.
28

Development of a composite index for pharmaceutical powders / Eben Horn

Horn, Eben January 2008 (has links)
The primary prerequisites for powder mixtures/granules intended for tableting is to posses the quality of (i) homogenous composition; (ii) acceptable flowability, (iii) sufficient compressibility; and (iv) anti-adhesiveness. The most important prerequisite for these powder mixture/granulates is undoubtedly the ability to flow, due to its effect on product quality, especially dose and dosage form uniformity. A comprehensive literature study on the flowability of powders revealed that flow is affected by physical properties such as molecular- and interparticle forces, particle size and size distribution, particle shape, particle density, surface structure of the particle, and particle packing geometry. Various flow tests are available to determine powder flow, each measuring a variety of the properties mentioned above, resulting in different flow results and a subsequent variation in the classification of powders. Particle characterization of a wide range of pharmaceutical fillers through SEM and particle size analysis, indicated considerable differences between physical properties of the various fillers, which suggested significant differences in their flow behaviour. Flow tests were conducted determining the critical orifice diameter (COD); percentage compressibility (%C); angle of repose (AoR) and flow rate (FR) of the fillers in the absence and presence of a glidant (0.25% Aerosil® 200). The results confirmed the expected differences in flow obtained from the various tests, with no one of the fillers achieving the same flow behaviour in all the tests. The difference in flow amongst the fillers for a specific test could, to a large extent, been correlated with specific physical properties of the particles within the powder bed. COD results illustrated the influence of particle size and shape and surface structure on the flowability of these materials, with fillers with a smaller average particle size, less spherical shaped particles and uneven / rough surface structures performing poorer than their counterparts. The percentage compressibility (%C) of the materials was affected by the shape and size of the particles and the density of the materials, whilst the packing geometry also affected flow behaviour. Particles with high density and a low internal porosity tended to posses free flowing properties. Powders with a larger difference in the ratio between their respective bulk and tapped densities/volumes presented better flow results. The AoR of the fillers was affected by the cohesiveness and friction between the particles as well as the shape, surface structure and size of the particles. This method was less discriminative in terms of indicating differences in the flow of powders with comparable physical properties. A further drawback of this method was the variation in results between repetitions, which is affected by the way the samples were handled prior to measurement. The flow rate (FR) of the fillers was predominantly affected by the density of the materials and the size, shape, and surface structure of the particles. Powders with a higher density seemed to exhibit a better flow rate, although some of the other factors affected the flow rate more when the densities were very close or identical. The following general rank order for the various fillers (as an average of their performance in all the tests) were established (with no glidant present): Cellactose® 80 > FlowLac® 100 > Prosolv® HD90 * Ludipress® > Emcompress® >Avicel® PH200 > Starlac® » Emcocel® 50M * chitosan » lactose monohydrate. Addition of a glidant failed to change the rank order significantly. During the final stage of the study an attempt was made to modify and/or refine the composite flow index (CFI) proposed by Taylor ef a/. (2000:6) through (i) inclusion of flow rate results in its computation and/or (ii) varying the contribution (percentage) of each test to the CFI (Taylor & co-workers used equal contributions, namely 33 V* %, in their calculation of the CFI). The results indicated that including the results from the flow rate test was not beneficial in terms of providing a more representative CFI (in fact it reduced the accuracy of the index). Next various weight ratios for COD, %C and AoR was used to determine the CFI of each filler, and an optimum ratio was found at 50%:40%:10% (COD:%C:AoR) resulting in the highest CFI for each powder and the widest range for the CFI (largest difference between minimum and maximum values). This ratio was found in the presence and absence of a glidant. At this ratio the CFI discriminated well between the different powders in terms of their flowability. Lastly, the flowability scale for powders as used by the USP (20007:644) for %C and AoR results was adapted and fitted on the CFI results obtained for the various powders. This scale provided an exceptional fit for the powders both in the absence and presence of a glidant) and offered an excellent means for the grouping and classifcation of powders based on their CFI. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2009.
29

Development of a composite index for pharmaceutical powders / Eben Horn

Horn, Eben January 2008 (has links)
The primary prerequisites for powder mixtures/granules intended for tableting is to posses the quality of (i) homogenous composition; (ii) acceptable flowability, (iii) sufficient compressibility; and (iv) anti-adhesiveness. The most important prerequisite for these powder mixture/granulates is undoubtedly the ability to flow, due to its effect on product quality, especially dose and dosage form uniformity. A comprehensive literature study on the flowability of powders revealed that flow is affected by physical properties such as molecular- and interparticle forces, particle size and size distribution, particle shape, particle density, surface structure of the particle, and particle packing geometry. Various flow tests are available to determine powder flow, each measuring a variety of the properties mentioned above, resulting in different flow results and a subsequent variation in the classification of powders. Particle characterization of a wide range of pharmaceutical fillers through SEM and particle size analysis, indicated considerable differences between physical properties of the various fillers, which suggested significant differences in their flow behaviour. Flow tests were conducted determining the critical orifice diameter (COD); percentage compressibility (%C); angle of repose (AoR) and flow rate (FR) of the fillers in the absence and presence of a glidant (0.25% Aerosil® 200). The results confirmed the expected differences in flow obtained from the various tests, with no one of the fillers achieving the same flow behaviour in all the tests. The difference in flow amongst the fillers for a specific test could, to a large extent, been correlated with specific physical properties of the particles within the powder bed. COD results illustrated the influence of particle size and shape and surface structure on the flowability of these materials, with fillers with a smaller average particle size, less spherical shaped particles and uneven / rough surface structures performing poorer than their counterparts. The percentage compressibility (%C) of the materials was affected by the shape and size of the particles and the density of the materials, whilst the packing geometry also affected flow behaviour. Particles with high density and a low internal porosity tended to posses free flowing properties. Powders with a larger difference in the ratio between their respective bulk and tapped densities/volumes presented better flow results. The AoR of the fillers was affected by the cohesiveness and friction between the particles as well as the shape, surface structure and size of the particles. This method was less discriminative in terms of indicating differences in the flow of powders with comparable physical properties. A further drawback of this method was the variation in results between repetitions, which is affected by the way the samples were handled prior to measurement. The flow rate (FR) of the fillers was predominantly affected by the density of the materials and the size, shape, and surface structure of the particles. Powders with a higher density seemed to exhibit a better flow rate, although some of the other factors affected the flow rate more when the densities were very close or identical. The following general rank order for the various fillers (as an average of their performance in all the tests) were established (with no glidant present): Cellactose® 80 > FlowLac® 100 > Prosolv® HD90 * Ludipress® > Emcompress® >Avicel® PH200 > Starlac® » Emcocel® 50M * chitosan » lactose monohydrate. Addition of a glidant failed to change the rank order significantly. During the final stage of the study an attempt was made to modify and/or refine the composite flow index (CFI) proposed by Taylor ef a/. (2000:6) through (i) inclusion of flow rate results in its computation and/or (ii) varying the contribution (percentage) of each test to the CFI (Taylor & co-workers used equal contributions, namely 33 V* %, in their calculation of the CFI). The results indicated that including the results from the flow rate test was not beneficial in terms of providing a more representative CFI (in fact it reduced the accuracy of the index). Next various weight ratios for COD, %C and AoR was used to determine the CFI of each filler, and an optimum ratio was found at 50%:40%:10% (COD:%C:AoR) resulting in the highest CFI for each powder and the widest range for the CFI (largest difference between minimum and maximum values). This ratio was found in the presence and absence of a glidant. At this ratio the CFI discriminated well between the different powders in terms of their flowability. Lastly, the flowability scale for powders as used by the USP (20007:644) for %C and AoR results was adapted and fitted on the CFI results obtained for the various powders. This scale provided an exceptional fit for the powders both in the absence and presence of a glidant) and offered an excellent means for the grouping and classifcation of powders based on their CFI. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2009.
30

Computational Fluid Dynamics Analysis for Wastewater Floc Breakage in Orifice Flow

Fernandes, Aaron Xavier 22 November 2012 (has links)
In the present work, the breakage of wastewater particles in orifice flow is investigated through numerical simulations. Using maximum strain rate along particle paths as the breakage criterion, breakage is predicted using computational fluid dynamics. The numerical simulations confirm that nominal orifice strain rate cannot explain the higher particle breakage in single-orifice systems compared to that of multi-orifice systems, instead particle breakage was found to correlate well with the maximum strain rates in the system. On the issue of effect of initial particle location on breakage, numerical modeling shows that particles travelling along the centerline are suspected to break less than those travelling near the wall. However, experiments designed to study the breakage of particles injected at various radial locations proved inconclusive. Finally, results suggest that while single orifice systems are ideal for strong particles, multi-orifice systems may be more effective in breaking weak particles.

Page generated in 0.0311 seconds