• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of three-body forces in few-body systems

Masita, Dithlase Frans 25 August 2009 (has links)
Bound state systems consisting of three nonrelativistic particles are numerically studied. Calculations are performed employing two-body and three-body forces as input in the Hamiltonian in order to study the role or contribution of three-body forces to the binding in these systems. The resulting differential Faddeev equations are solved as three-dimensional equations in the two Jacobi coordinates and the angle between them, as opposed to the usual partial wave expansion approach. By expanding the wave function as a sum of the products of spline functions in each of the three coordinates, and using the orthogonal collocation procedure, the equations are transformed into an eigenvalue problem. The matrices in the aforementioned eigenvalue equations are generally of large order. In order to solve these matrix equations with modest and optimal computer memory and storage, we employ the iterative Restarted Arnoldi Algorithm in conjunction with the so-called tensor trick method. Furthermore, we incorporate a polynomial accelerator in the algorithm to obtain rapid convergence. We applied the method to obtain the binding energies of Triton, Carbon-12, and Ozone molecule. / Physics / M.Sc (Physics)
2

The role of three-body forces in few-body systems

Masita, Dithlase Frans 25 August 2009 (has links)
Bound state systems consisting of three nonrelativistic particles are numerically studied. Calculations are performed employing two-body and three-body forces as input in the Hamiltonian in order to study the role or contribution of three-body forces to the binding in these systems. The resulting differential Faddeev equations are solved as three-dimensional equations in the two Jacobi coordinates and the angle between them, as opposed to the usual partial wave expansion approach. By expanding the wave function as a sum of the products of spline functions in each of the three coordinates, and using the orthogonal collocation procedure, the equations are transformed into an eigenvalue problem. The matrices in the aforementioned eigenvalue equations are generally of large order. In order to solve these matrix equations with modest and optimal computer memory and storage, we employ the iterative Restarted Arnoldi Algorithm in conjunction with the so-called tensor trick method. Furthermore, we incorporate a polynomial accelerator in the algorithm to obtain rapid convergence. We applied the method to obtain the binding energies of Triton, Carbon-12, and Ozone molecule. / Physics / M.Sc (Physics)
3

Bound states for A-body nuclear systems

Mukeru, Bahati 03 1900 (has links)
In this work we calculate the binding energies and root-mean-square radii for A−body nuclear bound state systems, where A ≥ 3. To study three−body systems, we employ the three−dimensional differential Faddeev equations with nucleon-nucleon semi-realistic potentials. The equations are solved numerically. For this purpose, the equations are transformed into an eigenvalue equation via the orthogonal collocation procedure using triquintic Hermite splines. The resulting eigenvalue equation is solved using the Restarted Arnoldi Algorithm. Ground state binding energies of the 3H nucleus are determined. For A > 3, the Potential Harmonic Expansion Method is employed. Using this method, the Schr¨odinger equation is transformed into coupled Faddeev-like equations. The Faddeevlike amplitudes are expanded on the potential harmonic basis. To transform the resulting coupled differential equations into an eigenvalue equation, we employ again the orthogonal collocation procedure followed by the Gauss-Jacobi quadrature. The corresponding eigenvalue equation is solved using the Renormalized Numerov Method to obtain ground state binding energies and root-mean-square radii of closed shell nuclei 4He, 8Be, 12C, 16O and 40Ca. / Physics / M. Sc. (Physics)
4

Bound states for A-body nuclear systems

Mukeru, Bahati 03 1900 (has links)
In this work we calculate the binding energies and root-mean-square radii for A−body nuclear bound state systems, where A ≥ 3. To study three−body systems, we employ the three−dimensional differential Faddeev equations with nucleon-nucleon semi-realistic potentials. The equations are solved numerically. For this purpose, the equations are transformed into an eigenvalue equation via the orthogonal collocation procedure using triquintic Hermite splines. The resulting eigenvalue equation is solved using the Restarted Arnoldi Algorithm. Ground state binding energies of the 3H nucleus are determined. For A > 3, the Potential Harmonic Expansion Method is employed. Using this method, the Schr¨odinger equation is transformed into coupled Faddeev-like equations. The Faddeevlike amplitudes are expanded on the potential harmonic basis. To transform the resulting coupled differential equations into an eigenvalue equation, we employ again the orthogonal collocation procedure followed by the Gauss-Jacobi quadrature. The corresponding eigenvalue equation is solved using the Renormalized Numerov Method to obtain ground state binding energies and root-mean-square radii of closed shell nuclei 4He, 8Be, 12C, 16O and 40Ca. / Physics / M. Sc. (Physics)

Page generated in 0.1569 seconds