• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sparse and orthogonal singular value decomposition

Khatavkar, Rohan January 1900 (has links)
Master of Science / Department of Statistics / Kun Chen / The singular value decomposition (SVD) is a commonly used matrix factorization technique in statistics, and it is very e ective in revealing many low-dimensional structures in a noisy data matrix or a coe cient matrix of a statistical model. In particular, it is often desirable to obtain a sparse SVD, i.e., only a few singular values are nonzero and their corresponding left and right singular vectors are also sparse. However, in several existing methods for sparse SVD estimation, the exact orthogonality among the singular vectors are often sacri ced due to the di culty in incorporating the non-convex orthogonality constraint in sparse estimation. Imposing orthogonality in addition to sparsity, albeit di cult, can be critical in restricting and guiding the search of the sparsity pattern and facilitating model interpretation. Combining the ideas of penalized regression and Bregman iterative methods, we propose two methods that strive to achieve the dual goal of sparse and orthogonal SVD estimation, in the general framework of high dimensional multivariate regression. We set up simulation studies to demonstrate the e cacy of the proposed methods.

Page generated in 0.1049 seconds