• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 1
  • 1
  • Tagged with
  • 23
  • 10
  • 9
  • 9
  • 9
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Corneal response to overnight orthokeratology

Alharbi, Ahmed A, Optometry & Vision Science, Faculty of Science, UNSW January 2005 (has links)
Orthokeratology (OK) is the reduction, modification or elimination of myopia through application of contact lenses. With the development of high Dk/t lens materials, overnight therapy has become the modality of choice for OK. Overnight OK lens wear has been previously investigated in terms of its efficacy to reduce myopia. However, the underlying effects of overnight OK lens wear on the human cornea have received less attention. As well as the clinical efficacy of overnight OK, this study investigated the effects of overnight OK on topographical corneal thickness and the overnight corneal edema response, and corneal tissue changes with overnight OK. Eighteen subjects participated as the OK lens-wearing group, wearing BE lenses (UltraVision, Brisbane, Queensland) in both eyes. A further ten subjects participated as control subjects, wearing conventional rigid lenses (J-Contour, UltraVision) in the right eye (RE) only. The left eye (LE) acted as a non-lens-wearing control. Both groups wore lenses overnight only, with no lens wear during the day. Measurements were conducted at baseline then on day 1, 4, 10, 30, 60, and 90 for the OK lens-wearing eyes; and up to day 30 for the control group, in the morning (after overnight lens wear) and in the evening (after 8-10 hours of lens removal). Variables measured included best vision sphere (BVS), unaided logMAR visual acuity (VA), refractive astigmatism, apical corneal power (ACP), simulated K readings (Medmont E300 corneal topographer), topographical corneal thickness (Holden-Payor optical pachometer), and keratocyte and endothelial cell densities (ConfoScan2 confocal microscope). Approximately 75% of myopia was corrected after the first night of OK lens wear and the changes in refractive error stabilised by day 10. By day 90, myopia reduction averaged 2.54 ?? 0.63 D. This was associated with significant improvement in unaided VA of about 82% after the first night of lens wear. There was no change in refractive astigmatism over the 3-month period. There was significant reduction in ACP in the OK lens-wearing eyes after the first night of lens wear, which accounted for more than 70% of the total ACP change over the 3-month period (RE: -2.16 ?? 0.53 D; LE: -2.11 ?? 0.86 D). There was significant central epithelial thinning (about 30%) and significant thickening (about 3%) in the mid-peripheral stroma in the OK lens-wearing eyes. Significant central epithelial thinning was found after the first night of lens wear while thickening in the mid-peripheral stroma reached statistical significance by day 4. Further analysis suggests that topographical corneal thickness changes account for the refractive error changes with overnight OK lens wear, rather than corneal bending. The central overnight stromal edema response was significantly reduced in the OK lens-wearing eyes (1.2 ?? 0.5%) to a level lower than in the conventional RGP (6.2 ?? 1.2%) and non-lens-wearing eyes (2.5 ?? 0.9%) in the control group. Mid-peripheral and peripheral stromal edema responses showed similar levels to those predicted based on lens Dk/t. A single overnight wear of BE and Paragon Corneal Refractive Therapy (CRT) lenses showed that the edema response to BE lens wear is significantly less than in the CRT lens-wearing eyes (BE: 2.5 ?? 0.7%; CRT 3.5 ?? 1.3%) immediately on eye opening. No significant changes were found in either central stromal keratocyte or endothelial cell densities in either OK or control groups over the study period. In conclusion, overnight OK lens wear induces significant reductions in myopia after the first night of lens wear associated with improvement in unaided VA. Overnight OK lens wear causes significant thinning in the central epithelium and significant mid-peripheral stromal thickening which results in flattening of the central cornea and steepening in the mid-periphery. Although there were no significant changes in central stromal keratocyte and endothelial cell densities, thinning of the central epithelial layer raises concerns regarding the safety of the procedure, especially with the alarming number of corneal infections reported recently in the literature.
12

In Vivo Imaging of Corneal Conditions using Optical Coherence Tomography

Haque, Sameena January 2006 (has links)
Purposes: To use optical coherence tomography (OCT) to image and quantify the effect of various corneal conditions, in terms of corneal, stromal and epithelial thickness, and light backscatter. To assess the changes caused by overnight orthokeratology (Corneal Refractive Therapy; CRT<sup>TM</sup>) lens wear, keratoconus and laser in-situ keratomileusis (LASIK) refractive surgery, each of which may lead to topographical alterations in corneal thickness either by temporary moulding, degeneration, or permanent laser ablation, respectively. <br /><br /> Methods: Topographical thickness of the cornea was measured using OCT in all studies. The CRT<sup>TM</sup> studies investigated myopic and hyperopic treatment, throughout the day. The myopic studies followed lens wear over a 4 week period, which was extended to 12 months, and investigated the thickness changes produced by two lenses of different oxygen transmissibility. CRT<sup>TM</sup> for hyperopia (CRTH<sup>TM</sup>) was evaluated after a single night of lens wear. <br /><br /> In the investigation of keratoconus, OCT corneal thickness values were compared to those obtained from Orbscan II (ORB) and ultrasound pachymetry (UP). A new fixation device was constructed to aid in the measurement of topographical corneal and epithelial thickness along 8 directions of gaze. Pachymetry maps were produced for the normal non-lens wearing cornea, and compared with the rigid gas permeable (RGP) lens wearing cornea and the keratoconic cornea. <br /><br /> Thickness changes prior to, and following LASIK were measured and monitored throughout six months. Myopic and hyperopic correction was investigated individually, as the laser ablation profiles differ for each type of procedure. The LASIK flap interface was also evaluated by using light backscatter data to monitor healing. <br /><br /> Results: Following immediate lens removal after myopic CRT<sup>TM</sup>, the central cornea swelled less than the periphery, with corneal swelling recovering to baseline levels within 3 hours. The central epithelium decreased and mid-peripheral epithelium increased in thickness, with a more gradual recovery throughout the day. There also seemed to be an adaptation effect on the cornea and epithelium, showing a reduced amount of change by the end of the 4 week study period. The thickness changes did not alter dramatically during the 12 month extended study. In comparing the two lens materials used for myopic CRT<sup>TM</sup> (Dk/t 91 vs. 47), there were differences in stromal swelling, but no differences in the central epithelial thinning caused by lens wear. There was a statistically insignificant asymmetry in mid-peripheral epithelial thickening between eyes, with the lens of lower Dk causing the greater amount of thickening. Hyperopic CRT<sup>TM</sup> produced a greater increase in central stromal and central epithelial thickness than the mid-periphery. Once again, the stroma recovered faster than the epithelium, which remained significantly thicker centrally for at least six hours following lens removal. <br /><br /> Global pachymetry measurements of the normal cornea and epithelium found the periphery to be thicker than the centre. The superior cornea and epithelium was thicker than the inferior. In the measurement of the keratoconic cornea, OCT and ORB correlated well in corneal thickness values. UP measured greater values of corneal thickness. The keratoconic epithelium was thinner than normal, and more so over the apex of the cone than at the centre. The location of the cone was most commonly found in the inferior temporal region. Central epithelial thickness was thinner in keratoconics than in RGP lens wearers, which in turn was thinner than in non-lens wearers. <br /><br /> Following LASIK surgery for both myopia and hyperopia, the topographical OCT thickness profiles showed stromal thinning in the areas of ablation. The central myopic cornea showed slight regression at 6 months. During early recovery, epithelial thickness increased centrally in hyperopes and mid-peripherally in myopes. By the end of the 6 month study, mid-peripheral epithelial thickness was greater than the centre in both groups of subjects. The light backscatter profiles after LASIK showed a greater increase in backscatter on the anterior side of the flap interface (nearer the epithelium), than the posterior side (in the mid-stroma) during healing. The flap interface was difficult to locate in the OCT images at 6 months. <br /><br /> Conclusion: All the CRT<sup>TM</sup> lenses used in this project produced more corneal swelling than that seen normally overnight without lens wear. In order for these lenses to be worn safely for long periods of time without affecting the health of the cornea, they need to be manufactured from the highest oxygen transmissible material available. The long-term effect of thinning on the epithelium's barrier properties needs to be monitored closely. <br /><br /> Global topographical thickness of the cornea and epithelium was measured using OCT in normal, RGP lens wearing and keratoconic eyes. Corneal and epithelial thickness was not symmetrical across meridians. The epithelium of RGP lens wearers was slightly thinner than normal, but not as thin as in keratoconics, suggesting that the epithelial change seen in keratoconus is mainly due to the condition. <br /><br /> Post-LASIK corneal and epithelial thickness profiles were not the same for myopic and hyperopic subjects, since the ablation patterns vary. Epithelial thickening in the mid-periphery had not recovered by six months in myopes or hyperopes, possibly indicating epithelial hyperplasia. Light backscatter profiles were used to monitor the recovery of the LASIK flap interface, showing the band of light backscatter around the flap interface to decrease as the cornea healed.
13

In Vivo Imaging of Corneal Conditions using Optical Coherence Tomography

Haque, Sameena January 2006 (has links)
Purposes: To use optical coherence tomography (OCT) to image and quantify the effect of various corneal conditions, in terms of corneal, stromal and epithelial thickness, and light backscatter. To assess the changes caused by overnight orthokeratology (Corneal Refractive Therapy; CRT<sup>TM</sup>) lens wear, keratoconus and laser in-situ keratomileusis (LASIK) refractive surgery, each of which may lead to topographical alterations in corneal thickness either by temporary moulding, degeneration, or permanent laser ablation, respectively. <br /><br /> Methods: Topographical thickness of the cornea was measured using OCT in all studies. The CRT<sup>TM</sup> studies investigated myopic and hyperopic treatment, throughout the day. The myopic studies followed lens wear over a 4 week period, which was extended to 12 months, and investigated the thickness changes produced by two lenses of different oxygen transmissibility. CRT<sup>TM</sup> for hyperopia (CRTH<sup>TM</sup>) was evaluated after a single night of lens wear. <br /><br /> In the investigation of keratoconus, OCT corneal thickness values were compared to those obtained from Orbscan II (ORB) and ultrasound pachymetry (UP). A new fixation device was constructed to aid in the measurement of topographical corneal and epithelial thickness along 8 directions of gaze. Pachymetry maps were produced for the normal non-lens wearing cornea, and compared with the rigid gas permeable (RGP) lens wearing cornea and the keratoconic cornea. <br /><br /> Thickness changes prior to, and following LASIK were measured and monitored throughout six months. Myopic and hyperopic correction was investigated individually, as the laser ablation profiles differ for each type of procedure. The LASIK flap interface was also evaluated by using light backscatter data to monitor healing. <br /><br /> Results: Following immediate lens removal after myopic CRT<sup>TM</sup>, the central cornea swelled less than the periphery, with corneal swelling recovering to baseline levels within 3 hours. The central epithelium decreased and mid-peripheral epithelium increased in thickness, with a more gradual recovery throughout the day. There also seemed to be an adaptation effect on the cornea and epithelium, showing a reduced amount of change by the end of the 4 week study period. The thickness changes did not alter dramatically during the 12 month extended study. In comparing the two lens materials used for myopic CRT<sup>TM</sup> (Dk/t 91 vs. 47), there were differences in stromal swelling, but no differences in the central epithelial thinning caused by lens wear. There was a statistically insignificant asymmetry in mid-peripheral epithelial thickening between eyes, with the lens of lower Dk causing the greater amount of thickening. Hyperopic CRT<sup>TM</sup> produced a greater increase in central stromal and central epithelial thickness than the mid-periphery. Once again, the stroma recovered faster than the epithelium, which remained significantly thicker centrally for at least six hours following lens removal. <br /><br /> Global pachymetry measurements of the normal cornea and epithelium found the periphery to be thicker than the centre. The superior cornea and epithelium was thicker than the inferior. In the measurement of the keratoconic cornea, OCT and ORB correlated well in corneal thickness values. UP measured greater values of corneal thickness. The keratoconic epithelium was thinner than normal, and more so over the apex of the cone than at the centre. The location of the cone was most commonly found in the inferior temporal region. Central epithelial thickness was thinner in keratoconics than in RGP lens wearers, which in turn was thinner than in non-lens wearers. <br /><br /> Following LASIK surgery for both myopia and hyperopia, the topographical OCT thickness profiles showed stromal thinning in the areas of ablation. The central myopic cornea showed slight regression at 6 months. During early recovery, epithelial thickness increased centrally in hyperopes and mid-peripherally in myopes. By the end of the 6 month study, mid-peripheral epithelial thickness was greater than the centre in both groups of subjects. The light backscatter profiles after LASIK showed a greater increase in backscatter on the anterior side of the flap interface (nearer the epithelium), than the posterior side (in the mid-stroma) during healing. The flap interface was difficult to locate in the OCT images at 6 months. <br /><br /> Conclusion: All the CRT<sup>TM</sup> lenses used in this project produced more corneal swelling than that seen normally overnight without lens wear. In order for these lenses to be worn safely for long periods of time without affecting the health of the cornea, they need to be manufactured from the highest oxygen transmissible material available. The long-term effect of thinning on the epithelium's barrier properties needs to be monitored closely. <br /><br /> Global topographical thickness of the cornea and epithelium was measured using OCT in normal, RGP lens wearing and keratoconic eyes. Corneal and epithelial thickness was not symmetrical across meridians. The epithelium of RGP lens wearers was slightly thinner than normal, but not as thin as in keratoconics, suggesting that the epithelial change seen in keratoconus is mainly due to the condition. <br /><br /> Post-LASIK corneal and epithelial thickness profiles were not the same for myopic and hyperopic subjects, since the ablation patterns vary. Epithelial thickening in the mid-periphery had not recovered by six months in myopes or hyperopes, possibly indicating epithelial hyperplasia. Light backscatter profiles were used to monitor the recovery of the LASIK flap interface, showing the band of light backscatter around the flap interface to decrease as the cornea healed.
14

Structural and functional aspects of myopia in young adults : an investigation of nearwork-induced transient myopia and accommodation in relation to refractive stability

Alderson, Alison January 2011 (has links)
This thesis has investigated nearwork-induced transient myopia and accommodation responses in relation to refractive stability, multichromatic stimuli and orthokeratology. Five individual studies have been carried out. Initially an investigation into the temporal and dioptric aspects of nearwork-induced transient myopia was undertaken, suggesting that increased task duration does not increase the level, or slow the regression of post-task NITM, however an increase in the dioptric demand of the task does. In the second study, a longitudinal myopia progression study, these findings were related to short term myopia progression. The third investigation demonstrates the feasibility of measuring the biometric correlates of nearwork-induced transient myopia using a low coherence reflectometry device (LenStar, Haag Streit Koeniz, Switzerland). Fourthly, a comparison of the differences between static and dynamic accommodative responses, microfluctuations and nearwork-induced transient myopia produced when viewing a black/white target as oppose to a red/blue target has suggested the possibility of four accommodative responses to this multichromatic stimulus. Further investigation will be necessary to investigate if any of these response types are related to myopia progression. 2 The final study investigates the effect of two different designs of orthokeratology contact lenses (C5 and polynomial) on visual function. It appears to be the case that although the polynomial lens design has a larger refractive effect than the C5 lens it reduces both high and low contrast corrected visual acuity to a greater extent. The higher the baseline mean spherical equivalent refractive error the larger the detrimental effect.
15

Ocular biometric change in orthokeratology : an investigation into the effects of orthokeratology on ocular biometry and refractive error in an adult population

Parkinson, Annette January 2012 (has links)
Aim: This study looks at the effect of orthokeratology on a number of biometric parameters and refractive error in an adult population. Method: Forty three myopic subjects were recruited to a twelve month study into the effects of orthokeratology on ocular biometry and refractive error. Two different back surface lens designs were applied right eye) pentacurve and left eye) aspheric. The aspheric design was chosen to more closely mimic the cornea's natural shape. Anterior and posterior apical radii and p-values; corneal thickness and anterior chamber depth were measured using the Orbscan IIz; together with ocular biometry by IOL Master and a standard clinical refraction. All measurements were repeated at one night, one week, one, three, six and twelve months. Refractive changes were analysed against biometric changes. Results: Twenty seven participants completed one month of lens wear. Twelve subjects completed twelve months of lens wear. Subjects with myopia ≤ -4.00DS were successfully treated with orthokeratology. Both anterior and posterior apical radii and p values were altered by orthokeratology. Corneal thickness changes were in agreement with previously published studies. Axial length and anterior chamber depth were unaffected by the treatment. Conclusion: Orthokeratology should be available as an alternative to laser refractive surgery. It is best restricted to myopes of up to -4.00DS with low levels of with the rule corneal astigmatism. The use of an aspheric back design contact lens did not produce a significant benefit over that of a pentacurve.
16

Corneal response to overnight orthokeratology

Alharbi, Ahmed A, Optometry & Vision Science, Faculty of Science, UNSW January 2005 (has links)
Orthokeratology (OK) is the reduction, modification or elimination of myopia through application of contact lenses. With the development of high Dk/t lens materials, overnight therapy has become the modality of choice for OK. Overnight OK lens wear has been previously investigated in terms of its efficacy to reduce myopia. However, the underlying effects of overnight OK lens wear on the human cornea have received less attention. As well as the clinical efficacy of overnight OK, this study investigated the effects of overnight OK on topographical corneal thickness and the overnight corneal edema response, and corneal tissue changes with overnight OK. Eighteen subjects participated as the OK lens-wearing group, wearing BE lenses (UltraVision, Brisbane, Queensland) in both eyes. A further ten subjects participated as control subjects, wearing conventional rigid lenses (J-Contour, UltraVision) in the right eye (RE) only. The left eye (LE) acted as a non-lens-wearing control. Both groups wore lenses overnight only, with no lens wear during the day. Measurements were conducted at baseline then on day 1, 4, 10, 30, 60, and 90 for the OK lens-wearing eyes; and up to day 30 for the control group, in the morning (after overnight lens wear) and in the evening (after 8-10 hours of lens removal). Variables measured included best vision sphere (BVS), unaided logMAR visual acuity (VA), refractive astigmatism, apical corneal power (ACP), simulated K readings (Medmont E300 corneal topographer), topographical corneal thickness (Holden-Payor optical pachometer), and keratocyte and endothelial cell densities (ConfoScan2 confocal microscope). Approximately 75% of myopia was corrected after the first night of OK lens wear and the changes in refractive error stabilised by day 10. By day 90, myopia reduction averaged 2.54 ?? 0.63 D. This was associated with significant improvement in unaided VA of about 82% after the first night of lens wear. There was no change in refractive astigmatism over the 3-month period. There was significant reduction in ACP in the OK lens-wearing eyes after the first night of lens wear, which accounted for more than 70% of the total ACP change over the 3-month period (RE: -2.16 ?? 0.53 D; LE: -2.11 ?? 0.86 D). There was significant central epithelial thinning (about 30%) and significant thickening (about 3%) in the mid-peripheral stroma in the OK lens-wearing eyes. Significant central epithelial thinning was found after the first night of lens wear while thickening in the mid-peripheral stroma reached statistical significance by day 4. Further analysis suggests that topographical corneal thickness changes account for the refractive error changes with overnight OK lens wear, rather than corneal bending. The central overnight stromal edema response was significantly reduced in the OK lens-wearing eyes (1.2 ?? 0.5%) to a level lower than in the conventional RGP (6.2 ?? 1.2%) and non-lens-wearing eyes (2.5 ?? 0.9%) in the control group. Mid-peripheral and peripheral stromal edema responses showed similar levels to those predicted based on lens Dk/t. A single overnight wear of BE and Paragon Corneal Refractive Therapy (CRT) lenses showed that the edema response to BE lens wear is significantly less than in the CRT lens-wearing eyes (BE: 2.5 ?? 0.7%; CRT 3.5 ?? 1.3%) immediately on eye opening. No significant changes were found in either central stromal keratocyte or endothelial cell densities in either OK or control groups over the study period. In conclusion, overnight OK lens wear induces significant reductions in myopia after the first night of lens wear associated with improvement in unaided VA. Overnight OK lens wear causes significant thinning in the central epithelium and significant mid-peripheral stromal thickening which results in flattening of the central cornea and steepening in the mid-periphery. Although there were no significant changes in central stromal keratocyte and endothelial cell densities, thinning of the central epithelial layer raises concerns regarding the safety of the procedure, especially with the alarming number of corneal infections reported recently in the literature.
17

Corneal response to overnight orthokeratology

Alharbi, Ahmed A, Optometry & Vision Science, Faculty of Science, UNSW January 2005 (has links)
Orthokeratology (OK) is the reduction, modification or elimination of myopia through application of contact lenses. With the development of high Dk/t lens materials, overnight therapy has become the modality of choice for OK. Overnight OK lens wear has been previously investigated in terms of its efficacy to reduce myopia. However, the underlying effects of overnight OK lens wear on the human cornea have received less attention. As well as the clinical efficacy of overnight OK, this study investigated the effects of overnight OK on topographical corneal thickness and the overnight corneal edema response, and corneal tissue changes with overnight OK. Eighteen subjects participated as the OK lens-wearing group, wearing BE lenses (UltraVision, Brisbane, Queensland) in both eyes. A further ten subjects participated as control subjects, wearing conventional rigid lenses (J-Contour, UltraVision) in the right eye (RE) only. The left eye (LE) acted as a non-lens-wearing control. Both groups wore lenses overnight only, with no lens wear during the day. Measurements were conducted at baseline then on day 1, 4, 10, 30, 60, and 90 for the OK lens-wearing eyes; and up to day 30 for the control group, in the morning (after overnight lens wear) and in the evening (after 8-10 hours of lens removal). Variables measured included best vision sphere (BVS), unaided logMAR visual acuity (VA), refractive astigmatism, apical corneal power (ACP), simulated K readings (Medmont E300 corneal topographer), topographical corneal thickness (Holden-Payor optical pachometer), and keratocyte and endothelial cell densities (ConfoScan2 confocal microscope). Approximately 75% of myopia was corrected after the first night of OK lens wear and the changes in refractive error stabilised by day 10. By day 90, myopia reduction averaged 2.54 ?? 0.63 D. This was associated with significant improvement in unaided VA of about 82% after the first night of lens wear. There was no change in refractive astigmatism over the 3-month period. There was significant reduction in ACP in the OK lens-wearing eyes after the first night of lens wear, which accounted for more than 70% of the total ACP change over the 3-month period (RE: -2.16 ?? 0.53 D; LE: -2.11 ?? 0.86 D). There was significant central epithelial thinning (about 30%) and significant thickening (about 3%) in the mid-peripheral stroma in the OK lens-wearing eyes. Significant central epithelial thinning was found after the first night of lens wear while thickening in the mid-peripheral stroma reached statistical significance by day 4. Further analysis suggests that topographical corneal thickness changes account for the refractive error changes with overnight OK lens wear, rather than corneal bending. The central overnight stromal edema response was significantly reduced in the OK lens-wearing eyes (1.2 ?? 0.5%) to a level lower than in the conventional RGP (6.2 ?? 1.2%) and non-lens-wearing eyes (2.5 ?? 0.9%) in the control group. Mid-peripheral and peripheral stromal edema responses showed similar levels to those predicted based on lens Dk/t. A single overnight wear of BE and Paragon Corneal Refractive Therapy (CRT) lenses showed that the edema response to BE lens wear is significantly less than in the CRT lens-wearing eyes (BE: 2.5 ?? 0.7%; CRT 3.5 ?? 1.3%) immediately on eye opening. No significant changes were found in either central stromal keratocyte or endothelial cell densities in either OK or control groups over the study period. In conclusion, overnight OK lens wear induces significant reductions in myopia after the first night of lens wear associated with improvement in unaided VA. Overnight OK lens wear causes significant thinning in the central epithelium and significant mid-peripheral stromal thickening which results in flattening of the central cornea and steepening in the mid-periphery. Although there were no significant changes in central stromal keratocyte and endothelial cell densities, thinning of the central epithelial layer raises concerns regarding the safety of the procedure, especially with the alarming number of corneal infections reported recently in the literature.
18

Corneal response to overnight orthokeratology

Alharbi, Ahmed A, Optometry & Vision Science, Faculty of Science, UNSW January 2005 (has links)
Orthokeratology (OK) is the reduction, modification or elimination of myopia through application of contact lenses. With the development of high Dk/t lens materials, overnight therapy has become the modality of choice for OK. Overnight OK lens wear has been previously investigated in terms of its efficacy to reduce myopia. However, the underlying effects of overnight OK lens wear on the human cornea have received less attention. As well as the clinical efficacy of overnight OK, this study investigated the effects of overnight OK on topographical corneal thickness and the overnight corneal edema response, and corneal tissue changes with overnight OK. Eighteen subjects participated as the OK lens-wearing group, wearing BE lenses (UltraVision, Brisbane, Queensland) in both eyes. A further ten subjects participated as control subjects, wearing conventional rigid lenses (J-Contour, UltraVision) in the right eye (RE) only. The left eye (LE) acted as a non-lens-wearing control. Both groups wore lenses overnight only, with no lens wear during the day. Measurements were conducted at baseline then on day 1, 4, 10, 30, 60, and 90 for the OK lens-wearing eyes; and up to day 30 for the control group, in the morning (after overnight lens wear) and in the evening (after 8-10 hours of lens removal). Variables measured included best vision sphere (BVS), unaided logMAR visual acuity (VA), refractive astigmatism, apical corneal power (ACP), simulated K readings (Medmont E300 corneal topographer), topographical corneal thickness (Holden-Payor optical pachometer), and keratocyte and endothelial cell densities (ConfoScan2 confocal microscope). Approximately 75% of myopia was corrected after the first night of OK lens wear and the changes in refractive error stabilised by day 10. By day 90, myopia reduction averaged 2.54 ?? 0.63 D. This was associated with significant improvement in unaided VA of about 82% after the first night of lens wear. There was no change in refractive astigmatism over the 3-month period. There was significant reduction in ACP in the OK lens-wearing eyes after the first night of lens wear, which accounted for more than 70% of the total ACP change over the 3-month period (RE: -2.16 ?? 0.53 D; LE: -2.11 ?? 0.86 D). There was significant central epithelial thinning (about 30%) and significant thickening (about 3%) in the mid-peripheral stroma in the OK lens-wearing eyes. Significant central epithelial thinning was found after the first night of lens wear while thickening in the mid-peripheral stroma reached statistical significance by day 4. Further analysis suggests that topographical corneal thickness changes account for the refractive error changes with overnight OK lens wear, rather than corneal bending. The central overnight stromal edema response was significantly reduced in the OK lens-wearing eyes (1.2 ?? 0.5%) to a level lower than in the conventional RGP (6.2 ?? 1.2%) and non-lens-wearing eyes (2.5 ?? 0.9%) in the control group. Mid-peripheral and peripheral stromal edema responses showed similar levels to those predicted based on lens Dk/t. A single overnight wear of BE and Paragon Corneal Refractive Therapy (CRT) lenses showed that the edema response to BE lens wear is significantly less than in the CRT lens-wearing eyes (BE: 2.5 ?? 0.7%; CRT 3.5 ?? 1.3%) immediately on eye opening. No significant changes were found in either central stromal keratocyte or endothelial cell densities in either OK or control groups over the study period. In conclusion, overnight OK lens wear induces significant reductions in myopia after the first night of lens wear associated with improvement in unaided VA. Overnight OK lens wear causes significant thinning in the central epithelium and significant mid-peripheral stromal thickening which results in flattening of the central cornea and steepening in the mid-periphery. Although there were no significant changes in central stromal keratocyte and endothelial cell densities, thinning of the central epithelial layer raises concerns regarding the safety of the procedure, especially with the alarming number of corneal infections reported recently in the literature.
19

Structural and functional aspects of myopia in young adults. An investigation of nearwork-induced transient myopia and accommodation in relation to refractive stability.

Alderson, Alison J. January 2011 (has links)
This thesis has investigated nearwork-induced transient myopia and accommodation responses in relation to refractive stability, multichromatic stimuli and orthokeratology. Five individual studies have been carried out. Initially an investigation into the temporal and dioptric aspects of nearwork-induced transient myopia was undertaken, suggesting that increased task duration does not increase the level, or slow the regression of post-task NITM, however an increase in the dioptric demand of the task does. In the second study, a longitudinal myopia progression study, these findings were related to short term myopia progression. The third investigation demonstrates the feasibility of measuring the biometric correlates of nearwork-induced transient myopia using a low coherence reflectometry device (LenStar, Haag Streit Koeniz, Switzerland). Fourthly, a comparison of the differences between static and dynamic accommodative responses, microfluctuations and nearwork-induced transient myopia produced when viewing a black/white target as oppose to a red/blue target has suggested the possibility of four accommodative responses to this multichromatic stimulus. Further investigation will be necessary to investigate if any of these response types are related to myopia progression. 2 The final study investigates the effect of two different designs of orthokeratology contact lenses (C5 and polynomial) on visual function. It appears to be the case that although the polynomial lens design has a larger refractive effect than the C5 lens it reduces both high and low contrast corrected visual acuity to a greater extent. The higher the baseline mean spherical equivalent refractive error the larger the detrimental effect. / College of Optometrists
20

CLEAR - Orthokeratology

Vincent, S.J., Cho, P., Chan, K.Y., Fadel, D., Ghorbani Mojarrad, Neema, González-Méijome, J.M., Johnson, L., Kang, P., Michaud, L., Simard, P., Jones, L. 10 November 2021 (has links)
No / Orthokeratology (ortho-k) is the process of deliberately reshaping the anterior cornea by utilising specialty contact lenses to temporarily and reversibly reduce refractive error after lens removal. Modern ortho-k utilises reverse geometry lens designs, made with highly oxygen permeable rigid materials, worn overnight to reshape the anterior cornea and provide temporary correction of refractive error. More recently, ortho-k has been extensively used to slow the progression of myopia in children. This report reviews the practice of ortho-k, including its history, mechanisms of refractive and ocular changes, current use in the correction of myopia, astigmatism, hyperopia, and presbyopia, and standard of care. Suitable candidates for ortho-k are described, along with the fitting process, factors impacting success, and the potential options for using newer lens designs. Ocular changes associated with ortho-k, such as alterations in corneal thickness, development of microcysts, pigmented arcs, and fibrillary lines are reviewed. The safety of ortho-k is extensively reviewed, along with an overview of non-compliant behaviours and appropriate disinfection regimens. Finally, the role of ortho-k in myopia management for children is discussed in terms of efficacy, safety, and potential mechanisms of myopia control, including the impact of factors such as initial fitting age, baseline refractive error, the role of peripheral defocus, higher order aberrations, pupil size, and treatment zone size. / The CLEAR initiative was facilitated by the BCLA, with financial support by way of Educational Grants for collaboration, publication and dissemination provided by Alcon and CooperVision.

Page generated in 0.0549 seconds