• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 19
  • 10
  • 6
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 89
  • 24
  • 20
  • 20
  • 20
  • 20
  • 18
  • 18
  • 16
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ocelová konstrukce lávky / The steel structure of a foot-bridge

Veselý, Radek January 2016 (has links)
The topic of Master´s thesis is the design of steel foodbridge over the Morava river in Olomouc. Construction was carried out in two variants, one of which was chosen as the best option arched foodbridge is suspended orthotropic deck. Span bridge is 40m. Calculation of construction was carried out Scia Engineer 2015
12

On the Vibration and Buckling of Orthotropic Plates of Variable Thickness

Kumar, Krishan 11 1900 (has links)
<p> The problem of a thin, orthotropic skew plate of linearly varying thickness for vibration and buckling analyses is formulated under the assumptions of small-deflection theory of plates. Using the dimensionless oblique coordinates, the deflection surface of the plate is expressed as a polynomial series, each term of which satisfying the required polar symmetry conditions, and the natural frequencies are computed using Galerkin method. As is required in Galerkin method, the assumed deflection function satisfies all the boundary conditions on all the edges of the plate. For the skew plate, clamped on all the four edges, numerical results for the first few natural frequencies are presented for various combinations of aspect ratio, skew angle and taper parameter. Convergence study has been made for typical configuration of the plate and the limited available data is inserted therein along with the computed results, for comparison.</p> / Thesis / Master of Engineering (MEngr)
13

Ultimate Strength Analysis of Stiffened Panels Using a Beam-Column Method

Chen, Yong 16 January 2003 (has links)
An efficient beam-column approach, using an improved step-by-step numerical method, is developed in the current research for studying the ultimate strength problems of stiffened panels with two load cases: 1) under longitudinal compression, and 2) under transverse compression. Chapter 2 presents an improved step-by-step numerical integration procedure based on (Chen and Liu, 1987) to calculate the ultimate strength of a beam-column under axial compression, end moments, lateral loads, and combined loads. A special procedure for three-span beam-columns is also developed with a special attention to usability for stiffened panels. A software package, ULTBEAM, is developed as an implementation of this method. The comparison of ULTBEAM with the commercial finite element package ABAQUS shows very good agreement. The improved beam-column method is first applied for the ultimate strength analysis of stiffened panel under longitudinal compression. The fine mesh elasto-plastic finite element ultimate strength analyses are carried out with 107 three-bay stiffened panels, covering a wide range of panel length, plate thickness, and stiffener sizes and proportions. The FE results show that the three-bay simply supported model is sufficiently general to apply to any panel with three or more bays. The FE results are then used to obtain a simple formula that corrects the beam-column result and gives good agreement for panel ultimate strength for all of the 107 panels. The formula is extremely simple, involving only one parameter: the product λΠorth2. Chapter 4 compares the predictions of the new beam-column formula and the orthotropic-based methods with the FE solutions for all 107 panels. It shows that the orthotropic plate theory cannot model the "crossover" panels adequately, whereas the beam-column method can predict the ultimate strength well for all of the 107 panels, including the "crossover" panels. The beam-column method is then applied for the ultimate strength analysis of stiffened panel under transverse compression, with or without pressure. The method is based on a further extension of the nonlinear beam-column theory presented in Chapter 2, and application of it to a continuous plate strip model to calculate the ultimate strength of subpanels. This method is evaluated by comparing the results with those obtained using ABAQUS, for several typical ship panels under various pressures. / Ph. D.
14

Modeling Repair Patches of Ship Hull and Studying the Effect of Their Orientation on Stresses

Enwegy, Halima 01 January 2014 (has links)
The hull is the most important structural part of any maritime vessel. It must be adequately designed to withstand the harsh sailing environmental conditions and associated forces. In the past, the basic material used to manufacture the ship hull was wood, where the hull was usually shaped as cylindrical wooden shanks. In the present, hull designs have developed to steel columns or stiffened panels that are made of different types of materials. Panels that are stiffened orthogonally in two or more directions and have nine independent material constants are defined as orthotropic panels, and they achieve high specific strength. This thesis presents the effect of different patch orientations on the resulting strain and stress concentrations at the area of interaction between the panel and the patch. As it is known, the behavior of stiffened plates is affected by several important parameters, e.g., length to width ratio of the panel, stiffener geometry and spacing, aspect ratio for plates between stiffeners, plate slenderness, von Mises stresses, initial distortions, boundary conditions, and type of loading. A finite element model of the ship hull has been developed and run on ABAQUS (commercially available finite element software). The stiffened panel and patch are modeled as equivalent orthotropic plates made of steel. The panel edges are considered to be simply supported, and uniaxial tension was applied to the equivalent stiffened panel in addition to the lateral pressure (from water interaction). The developed model successfully predicted the optimal orientation of the panel for maximum stress concentration reduction. Moreover, in order to minimize the severe conditions caused by the mismatch that occurs if the material properties of the patch and the panel are the same during the patching process, it is necessary to stiffened the patch more than the panel. The developed model also suggested that an isotropic layer be added at the interaction to decrease the severity of arising stresses.
15

Acoustic scattering by cylindrical scatterers comprising isotropic fluid and orthotropic elastic layers

Bao, Chunyan January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Liang-Wu Cai / Acoustic scattering by a cylindrical scatterer comprising isotropic acoustic and orthotropic elastic layers is theoretically solved. The orthotropic material is used for the scattering problem because the sound speeds along radial and tangential axes can be different; which is an important property for acoustic cloaking design. A computational system is built for verifying the solutions and conducting simulations. Scattering solutions are obtained based on two theoretical developments. The first one is exact solutions for elastic waves in cylindrically orthotropic elastic media, which are solved using Frobenius method. The second theoretical development is a set of two canonical problems for acoustic-orthotropic-acoustic media. Based on the two theoretical developments, scattering by three specially selected simple multilayer scatterers are analyzed via multiple-scattering approach. Solutions for the three scatterers are then used for solving a “general” multilayer scatterer through a recursive solution procedure. The word “general” means the scatterer can have an arbitrary number of layers and each layer can be either isotropic acoustic or orthotropic elastic. No approximations have been used in the process. The resulting analytically-exact solutions are implemented and verified. As an application example, acoustic scattering by a scatterer with a single orthotropic layer is presented. The effects on the scattering due to changing parameters of the orthotropic layer are studied. Acoustic scattering by a specially designed multilayer scatterer is also numerically simulated. Ratios of the sound speeds of the orthotropic layers along r and θ directions are defined to satisfy the requirement of the Cummer-Schurig cloaking design. The simulations demonstrate that both the formalism and the computational implementation of the scattering solutions are correct.
16

Characterization and Optimization of Thermal Protective Fabrics Designed to Protect Against Splash Hazards

Osguthorpe, Jeremy 11 June 2014 (has links)
Thermal textiles used in Personal Protective Equipment (PPE) are used to protect individuals from the hazards of thermal energy. An analytical model of the diffusion of thermal energy within the fabric was developed to simulate the transfer of thermal energy due to a hot liquid splash. Based on the model results, it was determined that that the use of an orthotropic material in which the thermal conductivities in the radial and axial directions are different can be used to decrease the amount of heat transferred through the fabric and thereby increase amount of protection in PPE. An orthotropic material particularly performs well under situations where splashes are small in size and short in time duration. The increased level of protection may be enough to prevent a second-degree burn as determined by the Stoll criterion for materials in which the radial thermal conductivity is much larger than the axial thermal conductivity. , However, situations with larger splashes over longer duration, the benefits are minimal and at best may reduce the amount of energy transferred over part of the splash site thereby minimizing potential size of burn areas. A semi empirical test method in which analytical results are matched to experimental results by iteratively changing the radial thermal conductivity was presented as a way to extract information about the extent that a fabric is orthotropic. Preliminary results as compared to numerical CFD experimentation show that with a calibrated model, the method has potential of giving good results. Further physical experimentation is recommended to further validate that this method could be of use in determining the extent that a fabric is orthotropic.
17

Strongly orthotropic continuum mechanics

Kellermann, David Conrad, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
The principal contribution of this dissertation is a theory of Strongly Orthotropic Continuum Mechanics that is derived entirely from an assertion of geometric strain indeterminacy. Implementable into the finite element method, it can resolve widespread kinematic misrepresentations and offer unique and purportedly exact strain-induced energies by removing the assumptions of strain tensor symmetry. This continuum theory births the proposal of a new class of physical tensors described as the Intrinsic Field Tensors capable of generalising the response of most classical mechanical metrics, a number of specialised formulations and the solutions shown to be kinematically intermediate. A series of numerical examples demonstrate Euclidean objectivity, material frame-indifference, patch test satisfaction, and agreement between the subsequent Material Principal Co-rotation and P??I??C decomposition methods that produce the intermediary stress/strain fields. The encompassing theory has wide applicability owing to its fundamental divergence from conventional mechanics, it offers non-trivial outcomes when applied to even very simple problems and its use of not the Eulerian, Lagrangian but the Intrinsic Frame generates previously unreported results in strongly orthotropic continua.
18

Bending of an orthotropic cusped plate

Jaiani, George V. January 1998 (has links)
The bending of an orthotropic cusped plate in energetic and weighted Sobolev spaces has been considered. The existence and uniqueness of generalized and weak solutions of admissible boundary value problems (BVPs) have been investigated.
19

Investigation Of Design And Analyses Principles Of Honeycomb Structures

Aydincak, Ilke 01 November 2007 (has links) (PDF)
In this thesis, design and analyses of honeycomb structures are investigated. Primary goal is to develop an equivalent orthotropic material model that is a good substitute for the actual honeycomb core. By replacing the actual honeycomb structure with the orthotropic model, during the finite element analyses, substantial advantages can be obtained with regard to ease of modeling and model modification, solution time and hardware resources . To figure out the best equivalent model among the approximate analytical models that can be found in the literature, a comparison is made. First sandwich beams with four different honeycomb cores are modeled in detail and these are accepted as reference models. Then a set of equivalent models with the same dimensions is generated. The material properties of the equivalent models are taken from different studies performed in the literature. Both models are analyzed under the same loading and the boundary conditions. In finite element analyses, ANSYS finite element program is used. The results are compared to find out the best performing equivalent model. After three major analyses loops, decision on the equivalent model is made. The differences between the total reaction forces calculated by the equivalent model and the actual honeycomb model are all found to be within 10%. The equivalent model gives stress results at the macro-scale, and the local stresses and the strains can not be determined. Therefore it is deemed that for stress analysis, equivalent model can be used during the preliminary design phase. However, the equivalent model can be used reliably for deflection analysis, modal analysis, stiffness determination and aero-elastic analysis.
20

Design And Analysis Of Filament Wound Composite Tubes

Balya, Bora 01 December 2004 (has links) (PDF)
This thesis is for the investigation of the design and analysis processes of filament wound composite tubes under combined loading. The problem is studied by using a computational tool based on the Finite Element Method (FEM). Filament wound tubes are modeled as multi layered orthotropic tubes. Several analyses are performed on layered orthotropic tubes by using FEM. Results of the FEM are examined in order to investigate characteristics of filament wound tubes under different combined loading conditions. Winding angle, level of orthotropy and various ratios of the loading conditions were the main concerns of the study. The results of the FEM analysis are discussed for each loading condition. Both pure loading and combined loading analysis results were consistent with the ones mentioned in literature, such as optimum winding angles, optimum loading ratios and optimum level of orthotropy. Modeling parameters, assumptions and source of errors are also discussed. Finally, the required data is obtained for the design of filament wound composite tubes under combined loading.

Page generated in 0.0534 seconds