• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tuning the passive structural response of an oscillating-foil propulsion mechanism for improved thrust generation and efficiency

Richards, Andrew James 19 November 2013 (has links)
While most propulsion systems which drive aquatic and aerial vehicles today are based on rotating blades or foils, there has recently been renewed interest in the use of oscillating foils for this purpose, similar to the fins or wings of biological swimmers and flyers. These propulsion systems offer the potential to achieve a much higher degree of manoeuvrability than what is possible with current man-made propulsion systems. There has been extensive research both on the theoretical aspects of oscillating-foil propulsion and the implementation of oscillating foils in practical vehicles, but the current understanding of the physics of oscillating foils is incomplete. In particular, questions remain about the selection of the appropriate structural properties for the use of flexible oscillating foils which, under suitable conditions, have been demonstrated to achieve better propulsive performance than rigid foils. This thesis investigates the effect of the foil inertia, stiffness, resonant frequency and oscillation kinematics on the thrust generation and efficiency of a flexible oscillating-foil propulsion system. The study is based on experimental measurements made by recording the applied forces while driving foil models submerged in a water tunnel in an oscillating motion using servo-motors. The design of the models allowed for the construction of foils with various levels of stiffness and inertia. High-speed photography was also used to observe the dynamic deformation of the flexible foils. The results show that the frequency ratio, or ratio of oscillation frequency to resonant frequency, is one of the main parameters which determines the propulsive efficiency since the phase of the deformation and overall amplitude of the motion of the bending foil depend on this ratio. When comparing foils of equivalent resonant frequency, heavier and stiffer foils were found to achieve greater thrust production than lighter and more flexible foils but the efficiency of each design was comparable. Through the development of a semi-empirical model of the foil structure, it was shown that the heavier foils have a lower damping ratio which allows for greater amplification of the input motion by the foil deformation. It is expected that the greater motion amplitude in turn leads to the improved propulsive performance. Changing the Reynolds number of the flow over the foils was found to have little effect on the relation between structural properties and propulsive performance. Conversely, increasing the amplitude of the driven oscillating motion was found to reduce the differences in performance between the various structural designs and also caused the peak efficiency to be achieved at lower frequency ratios. The semi-empirical model predicted a corresponding shift in the frequency ratio which results in the maximum amplification of the input motion and also predicted more rapid development of a phase lag between the deformation and the actuating motion at low frequency ratios. The shift in the location of the peak efficiency was attributed to these changes in the structural dynamics. When considering the form of the oscillating motion, foils driven in combined active rotation and translation motions were found to achieve greater efficiency but lower thrust production than foils which were driven in translation only. The peak efficiencies achieved by the different structural designs relative to each other also changed considerably when comparing the results of the combined motion trials to the translation-only cases. To complete the discussion of the results, the implications of all of these findings for the design of practical propulsion systems are examined. / Graduate / 0548
2

Experimental investigation of oscillating-foil technologies

Iverson, Dylan 01 October 2018 (has links)
This thesis contains an experimental campaign on the practical implementation of oscillating-foil technologies. It explores two possible engineering applications of oscillating-wings: thrust-generation, and energy-extraction. The history of, benefits of, and difficulties involved in the use of oscillating-foils is discussed throughout. Many existing technologies used for thrust generation and hydrokinetic energy extraction are based on rotating blades or foils, which have evolved over decades of use. In recent years, designs that use oscillating-foils, with motions analogous to the flapping of a fish’s tail or a bird’s wing, have shown increased hydrodynamic performance compared to the traditional rotary technologies. However, these systems are complex, both in terms of the governing unsteady fluid dynamics, and the methods by which kinematics are prescribed. Simply put, system complexity and cost need to be reduced before these devices see wide-spread use. For this reason, the work contained within this thesis explores possible methods of reducing the complexity of oscillating-foil systems in an effort to contribute to their development. For thrust-generation applications, this entailed using flexible foils to create passive pitching kinematics. This was parametrically studied by testing foils of different structural properties under a range of kinematics. The results suggested that properly tuning the flexibility of the foil could enhance both the thrust generation, and the efficiency of the propulsive system. With respect to energy-harvesting applications, the reliability of a novel fully passive turbine was assessed. The prototype tested had no active control strategy, and the degreesof-freedom were not mechanically linked, greatly simplifying the design. The prototype was subjected to real-world conditions, including high turbulence levels and the wake of an upstream turbine, and displayed robust performance in most conditions. In both applications, the hydrodynamic performance of the oscillating-wings was directly measured, and particle image velocimetry was used to observe the flow topology in the wakes and boundary layers of the foils. The vortex and stall dynamics were highlighted as key flow features, and are studied in detail. / Graduate
3

Hydrodynamics Of An Oscillating Foil With A Long Flexible Trailing Edge

Shinde, Sachin Yashavant 04 1900 (has links)
In nature, many swimming and flying creatures use the principle of oscillatory lift-based propulsion. Often the flapping element is flexible, totally or partially. The flow dynamics because of a flexible flap is thus of considerable interest. We are interested especially in lunate fish propulsion. The present work investigates the effect of trailing edge flexibility on the flow field created by an oscillating airfoil in an attempt to mimic the flow around the flexible tails often found in fish. A flexible flap with negligible mass and stiffness is attached at the trailing edge of NACA0015 airfoil. The flap length is 75% of the rigid chord length. The airfoil oscillates about a hinge point at 30% chord from the leading edge and at the same time it moves in a circular path in stationary water. The parameters varied are frequency, amplitude of oscillation and forward speed. For a given combination of amplitude and frequency of oscillation, the forward speed is chosen such that the Strouhal number comes around 0.3, which falls in the gamut of Strouhal numbers for maximum propulsive efficiency. We visualize the flow with dye and particles and measure velocities using Particle Image Velocimetry (PIV). We use shadow technique and image processing to study the flap dynamics. We do a qualitative and quantitative comparison of the wake flow generated by two airfoil models, one with rigid trailing edge (model -B) and the other with flexible trailing edge (model -A) i.e. with a flexible flap fixed to the trailing edge. We study the flap dynamics, the flow around the flap, evolution of vortices, wake width, circulations around airfoil and vortices, momentum and energy in the wake (which is measure of propulsion efficiency), vortex geometry in the wake in terms of vortex spacing, etc. We also conduct a parametric study for both the models. Flap dynamics plays a prominent role in defining the signature of the wake. The observed flap deflections are quite large and the flap exhibits more than one mode of deflection; this affects the vortex-shedding pattern. The flap tip also executes a near sinusoidal motion with a phase difference between the trailing edge and the flap tip. The dye visualization studies show that a flexible trailing edge induces multiple vortices while in case of a rigid trailing edge, large vortical structures are shed. In case of flexible trailing edge (model -A), the vortices are shed away from the mean path of motion and are arranged in a ‘reverse Karman vortex street’ pattern producing an undulating jet representing a thrust on the airfoil. For the same Strouhal number, in case of rigid trailing edge (model -B), the vortices are shed nearly along the mean path of motion indicating a momentumless wake. The wake structures, particularly in case of model -A, are nearly insensitive to variations in amplitude and frequency. The wake of model -B shows some variable flow patterns for different amplitudes of oscillation. Although the total chord of model -A is 1.75 times more than the chord of model -B, the wake width is nearly the same for the two models when the amplitude of oscillation is same. The addition of the flap to the airfoil keeps the wake flow two-dimensional or symmetric about the center plane for longer times and longer downstream distances in comparison with the wake flow generated by rigid trailing edge. For 15o and 20o amplitudes of oscillations, the flow separates over the airfoil itself; the interaction of the separated flow with the flexible flap is quite interesting, which needs further investigations. The wake generated by the airfoil with flexible flap at the trailing edge has some common features with the wakes generated by the flow over a flapping filament (which is the one-dimensional representation of a fluttering flag), an accelerating mullet fish (a carangiform swimmer) and a steadily swimming eel (an anguilliform swimmer).

Page generated in 0.0672 seconds