• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Composition theorems for paired Lagrangian distributions / Kompositionssätze für gepaarte Lagrange-Distributionen

Nguyen, Nhu Thang 22 November 2011 (has links)
No description available.
2

Feynman path integral for Schrödinger equation with magnetic field

Cangiotti, Nicolò 14 February 2020 (has links)
Feynman path integrals introduced heuristically in the 1940s are a powerful tool used in many areas of physics, but also an intriguing mathematical challenge. In this work we used techniques of infinite dimensional integration (i.e. the infinite dimensional oscillatory integrals) in two different, but strictly connected, directions. On the one hand we construct a functional integral representation for solutions of a general high-order heat-type equations exploiting a recent generalization of infinite dimensional Fresnel integrals; in this framework we prove a a Girsanov-type formula, which is related, in the case of Schrödinger equation, to the Feynman path integral representation for the solution in presence of a magnetic field; eventually a new phase space path integral solution for higher-order heat-type equations is also presented. On the other hand for the three dimensional Schrödinger equation with magnetic field we provide a rigorous mathematical Feynman path integral formula still in the context of infinite dimensional oscillatory integrals; moreover, the requirement of independence of the integral on the approximation procedure forces the introduction of a counterterm, which has to be added to the classical action functional (this is done by the example of a linear vector potential). Thanks to that, it is possible to give a natural explanation for the appearance of the Stratonovich integral in the path integral formula for both the Schrödinger and the heat equation with magnetic field.
3

Existence and Number of Global Solutions to Model Nonlinear Partial Differential Equations

Galstyan, Anahit 13 July 2005 (has links)
No description available.
4

Analysis in fractional calculus and asymptotics related to zeta functions

Fernandez, Arran January 2018 (has links)
This thesis presents results in two apparently disparate mathematical fields which can both be examined -- and even united -- by means of pure analysis. Fractional calculus is the study of differentiation and integration to non-integer orders. Dating back to Leibniz, this idea was considered by many great mathematical figures, and in recent decades it has been used to model many real-world systems and processes, but a full development of the mathematical theory remains incomplete. Many techniques for partial differential equations (PDEs) can be extended to fractional PDEs too. Three chapters below cover my results in this area: establishing the elliptic regularity theorem, Malgrange-Ehrenpreis theorem, and unified transform method for fractional PDEs. Each one is analogous to a known result for classical PDEs, but the proof in the general fractional scenario requires new ideas and modifications. Fractional derivatives and integrals are not uniquely defined: there are many different formulae, each of which has its own advantages and disadvantages. The most commonly used is the classical Riemann-Liouville model, but others may be preferred in different situations, and now new fractional models are being proposed and developed each year. This creates many opportunities for new research, since each time a model is proposed, its mathematical fundamentals need to be examined and developed. Two chapters below investigate some of these new models. My results on the Atangana-Baleanu model proposed in 2016 have already had a noticeable impact on research in this area. Furthermore, this model and the results concerning it can be extended to more general fractional models which also have certain desirable properties of their own. Fractional calculus and zeta functions have rarely been united in research, but one chapter below covers a new formula expressing the Lerch zeta function as a fractional derivative of an elementary function. This result could have many ramifications in both fields, which are yet to be explored fully. Zeta functions are very important in analytic number theory: the Riemann zeta function relates to the distribution of the primes, and this field contains some of the most persistent open problems in mathematics. Since 2012, novel asymptotic techniques have been applied to derive new results on the growth of the Riemann zeta function. One chapter below modifies some of these techniques to prove asymptotics to all orders for the Hurwitz zeta function. Many new ideas are required, but the end result is more elegant than the original one for Riemann zeta, because some of the new methodologies enable different parts of the argument to be presented in a more unified way. Several related problems involve asymptotics arbitrarily near a stationary point. Ideally it should be possible to find uniform asymptotics which provide a smooth transition between the integration by parts and stationary phase methods. One chapter below solves this problem for a particular integral which arises in the analysis of zeta functions.
5

Lattice Point Counting through Fractal Geometry and Stationary Phase for Surfaces with Vanishing Curvature

Campolongo, Elizabeth Grace 02 September 2022 (has links)
No description available.

Page generated in 0.0769 seconds