• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 76
  • 15
  • 9
  • 7
  • 7
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 271
  • 103
  • 92
  • 65
  • 42
  • 37
  • 34
  • 33
  • 28
  • 28
  • 27
  • 24
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Avaliação da neoformação óssea em tíbia de coelhos utilizando cúpula de hidroxiapatita associada a diferentes biomateriais / Evaluation of new bone formation in rabbits using hydroxyapatite dome associated to different materials

Nancy Tiaki Maeda 22 August 2013 (has links)
A instalação de implantes odontológicos requer a presença de substrato ósseo adequado para garantir estabilidade e equilíbrio biomecânico. A deficiência óssea requer procedimentos de enxertia para adequar o volume para a instalação de implantes, porém a utilização de enxertos autógenos causa aumento de morbidade ao paciente e o uso de material homógeno e xenógeno apresenta dúvidas quanto à reação autoimune, transmissão de doenças e ao grau de reabsorção do enxerto. Com o grande desenvolvimento científico e tecnológico dos biomateriais, os materiais cerâmicos, tornaram-se alternativas promissoras para a recomposição da estrutura óssea perdida. As cerâmicas à base de fosfato de cálcio como a hidroxiapatita (HA) e o beta- fosfato tricálcido (beta-TCP), são materiais que apresentam qualidades desejáveis no processo de neoformação óssea como, por exemplo, a biocompatibilidade, bioatividade e osteocondutividade. A proposta deste trabalho é desenvolver e estudar corpos de prova na forma de cúpula oca de hidroxiapatita preenchidos por coágulo, beta- TCP e composto vitamínico, para estudar a osteogênese supracortical, a partir do potencial osteocondutor da cúpula de HA. As cúpulas foram obtidas por prensagem isostática a 200 MPa e sinterização ao ar a 1100°C por 60 minutos. As caracterizações físico-químicas das matérias-primas e da cúpula de HA foram realizadas por difração de raios X, microscopia eletrônica de varredura e determinação da densidade. Na caracterização biológica, foram realizados o teste de citotoxicidade in vitro e ensaio in vivo. Foram designados 9 coelhos (raça Nova Zelândia), sendo instaladas 18 cúpulas, divididas em três grupos, de acordo com o preenchimento: controle, composto vitamínico e β-TCP em forma de pó. O período de reparação tecidual foi de 8 semanas, no qual foram aplicados marcadores de fluorescência. Após o período de cicatrização e eutanásia, as amostras foram incluídas em resina para a obtenção das lâminas e observadas em microscópio de fluorescência, para avaliar a quantidade de tecido ósseo neoformado, em microscópio de campo claro, para verificar as células presentes no tecido formado e por Espectroscopia de Energia Dispersiva, para análise química, da formação no interior das cúpulas. Como resultados, a cúpula de hidroxiapatita apresenta bom desempenho como arcabouço para neoformação óssea acima da cortical da tíbia de coelhos, pois manteve-se íntegra, com boa estabilidade e boa integração ao tecido ósseo, e principalmente pela neoformação óssea, demonstrando seu potencial osteocondutor. Em relação aos materiais de preenchimento, o beta-TCP apresenta maior valor de área de osso neoformado, em comparação com o coágulo. Nas cúpulas com preenchimento de composto vitamínico, não há formação de tecido ósseo pela não reabsorção do material. / The installation of dental implants requires the presence of adequate bone substrate to ensure stability and biomechanical balance. Deficiency requires bone grafting procedures to adjust the volume for implant placement, but the use of autogenous grafts cause increased morbidity to the patient and the use of homogenous and xenogenous materials has doubts about the autoimmune reaction, transmission of disease and the degree of resorption of the graft. With the great scientific and technological development of biomaterials, ceramic materials, have become promising alternatives for restoration of lost bone structure. The ceramics based on calcium phosphate such as hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP) are materials having desirable qualities in the process of bone formation, for example, biocompatibility, bioactivity and osteoconductivity. The purpose of this work is to develop and study the dome-shaped hydroxyapatite filled with blood clot, beta-TCP and vitamin compound, to study osteogenesis supracortical from the osteoconductive potential of the dome of HA. The domes were obtained by isostatic pressing at 200 MPa and sintered in air at 1100 ° C for 60 minutes. The physico-chemical characterization of raw materials and the dome of HA were performed by X-ray diffraction, scanning electron microscopy and density determination. In biological characterization were performed tests for in vitro cytotoxicity and tests in vivo. Were designated 9 rabbits (New Zeland), and installed 18 domes, divided into three groups, according to the filling: control, vitamin compound and β-TCP in powder form. The period of wound healing was 8 weeks, when a fluorescence marker was applied. After the healing period and euthanasia, the samples were embedded in resin to obtain the slides and observed under fluorescence microscope to evaluate the amount of newly formed bone tissue in bright field microscope to check the cells present in the tissue and by Energy Dispersive Spectroscopy for chemical analysis, inside the domes. As a result, the hydroxyapatite dome has good performance as scaffold for bone formation above the cortical tibia of rabbits, it remained intact, with good stability and good integration with bone tissue, especially bone formation, demonstrating osteoconductive potential. Regarding the filling materials, beta-TCP has a higher value of area of new bone formation compared to the clot. In the domes-filled vitamin compound, there is no formation of bone resorption by not material.
42

Att vårda barn med medfödd benskörhet : Barnsjuksköterskors erfarenheter av osteogenesis imperfecta hos barn

Dejemyr, Linnea, Hammarskiöld, Pauline January 2020 (has links)
Osteogenisis imperfecta (OI), eller medfödd benskörhet, är en sällsynt bindvävssjukdom som gör skelettet skört. Barn med OI kan påverkas av återkommande frakturer, smärta, kotkompressioner och flertalet sjukhusvistelser. Det finns tidigare studier som beskriver barn med OI och deras föräldrars upplevelser av sjukdomen och dess vård, samtidigt saknas studier som belyser barnsjuksköterskans perspektiv. Syftet med denna studie var att beskriva barnsjuksköterskors erfarenheter av att vårda barn som har osteogenesis imperfecta. En kvalitativ design med induktiv ansats samt ett strategiskt urval tillämpades. Semistrukturerade intervjuer genomfördes med 14 barnsjuksköterskor från åtta svenska sjukhus. En induktiv innehållsanalys användes för att analysera insamlad data. I resultatet framkom tre kategorier: en utmanande omvårdnadssituation, betydelsen av personcentrerad vård och betydelsen av att arbeta i team med sju underkategorier; att vara på okänd mark, att anpassa omvårdnaden till benskörheten, att stötta och vägleda föräldrarna, att samarbeta med barn och föräldrar, att skapa kontinuitet, att samarbeta med kollegor och att ha tillgång till specialistteam. Det kan vara en utmaning att vårda barn med OI. Tillgång till specialistteam är viktigt och skapar trygghet för barnsjuksköterskor och familj. Stora geografiska avstånd och olika journalsystem komplicerar kommunikationen och informationsutbytet. Det finns en önskan om fler information- och kunskapskanaler såsom nyhetsbrev, föreläsningar online och sjuksköterskemöten.
43

Osteocyte signaling and its effects on the activities of osteoblasts and breast cancer cells

Ahandoust, Sina 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Bone is a common location for breast cancer cell metastasis, and progression of tumor in bone can lead to bone loss and affect human health. Osteocytes have important roles in bone homeostasis and osteogenesis, and their interaction with metastasized cancer cells are known to affect progression of metastasized tumor. However, the potential role of metabolic signaling and actin- cytoskeleton-associated moesin in the interaction of osteocytes and tumor cells remain poorly understood. In this study, we first examined the roles of metabolic signaling, specifically global AMPK modulators and mitochondria-specific AMPK inhibitor (Mito-AIP), as well as mechanical force in beta catenin signaling through interaction between osteocytes and precursor osteoblasts as well as osteocytes and breast cancer cells. We also evaluated the role of metabolic signaling in Rho GTPases including RhoA, Rac1 and Cdc42. We observed that AMPK activator (A769662) and Mito-AMPK stimulated beta catenin translocation to the nucleus, indicating the activation of Wnt signaling, while Mito-AIP did not significantly affect beta catenin activation in osteoblasts. We also observed that osteocyte conditioned medium (CM) treated with Mito-AIP substantially increased beta catenin signaling in osteoblasts, while decreasing beta catenin signaling in breast cancer cells. CM of osteocytes treated with fluid flow increased beta catenin signaling in breast cancer cells. A769662 and Mito-AIP also decreased the activities of RhoA, Rac1, and Cdc42 in cancer cells which are known to regulate cancer cell migration. Additionally, we evaluated the roles of intracellular and extracellular moesin (MSN) protein in well-established oncogenic signaling proteins, such as FAK, Src, and RhoA as well beta catenin signaling. Constitutively active MSN (MSN+) significantly increased FAK and Src activities in cancer cells, but decreased the activity of RhoA. Surprisingly, CM of mesenchymal stem cells treated with MSN+ decreased the activities of FAK, Src, and RhoA, suggesting the inhibitory role of extracellular MSN in tumor-promoting signaling. Our results suggest the distinct role of AMPK signaling, specifically at mitochondria of osteocytes, in the activities of beta-catenin signaling in osteoblasts and breast cancer cells and the distinct role of intracellular and extracellular MSN in these two types of cell.
44

Effects of PYK2-Deficiency on Midpalatal Suture Expansion in Mice

Sun, Jun 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Background: Suture expansion is a very important clinical approach to correct maxillary width deficiency, but it has a high potential for treatment relapse. Accelerating bone formation and mineralization in the midpalatal suture during suture expansion is beneficial in preventing relapse of the arch width and reducing the retention period. Pyk2 is tyrosine kinase which has been shown to mediate signaling pathways that are involved in the process of bone remodeling. Pyk2 knock-out (KO) mice have augmented bone formation and increased bone mass, suggesting that therapeutic strategies that inhibit Pyk2 may be useful to enhance bone remodeling and prevent suture relapse during suture expansion. Objectives: To determine if Pyk2-deficiency affects midpalatal suture bone mass and bone remodeling with or without suture expansion in mice. Methods: Thirty-six Pyk2-KO and thirty-six wild type (WT) 6 week-old male mice were randomly assigned into three groups: receiving no expansion force (0 g), 10 g or 20 g force of rapid maxillary expansion for 14 days. Half of the mice in each group were used for histology analysis; the other half was assigned for fluorescence analysis. Suture width, maxilla width and bone volume/tissue volume around suture bone edges were measured using micro-CT. Histological analyses of osteoclasts (tartrate resistant acid phosphatase, TRAP), osteoblasts (alkaline phosphatase, ALP) and chondrocytes (alcian blue) were performed. Results: The BV/TV ratio was significantly higher in Pyk2-KO control mice compared to WT control mice. Suture expansion in WT and Pyk2-KO mice led to an increase in bone marrow spaces around the suture edge and significantly reduced BV/TV. Expansion also led to a significant increase in suture width, suture fibrous area, osteoclast number, cartilage area and hypertrophic chondrocyte number. However, BV/TV in Pyk2-KO mice was significantly higher than in WT mice at both the 10 g and 20 g force levels. In addition, Pyk2-KO exhibited reduced suture width, maxilla width, fibrous area and osteoclast number per bone surface (OC.S/BS) compared to WT mice under expansion forces. Cartilage area and hypertrophic chondrocyte number were increased by force but were independent of mouse genotypes. Conclusion: Pyk2-KO mice have higher BV/TV and narrower suture width compared to WT mice, which may be due to decreased osteoclast activity. The higher BV/TV of the midpalatal sutures of Pyk2-KO mice following suture expansion may suggest the presence of a more stable suture that has a reduced potential for relapse. Therapeutic strategies to inhibit Pyk2 during RME may be beneficial in increasing bone mass and preventing relapse of the suture.
45

The Effects of Zoledronate and Raloxifene Combination Therapy on Diseased Mouse Bone

Powell, Katherine M. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Current interventions used to reduce skeletal fragility are insufficient at enhancing bone across multiple hierarchical levels. Bisphosphonates, such as Zoledronate (ZOL), treat a variety of bone disorders by increasing bone mass and bone mineral density to decrease fracture risk. Despite the mass-based improvements, bisphosphonate use has been shown to compromise bone quality. Alternatively, Raloxifene (RAL) has recently been demonstrated to improve tissue quality and overall mechanical properties by binding to collagen and increasing tissue hydration in a cell-independent manner. We hypothesized that a combination of RAL and ZOL would improve mechanical and material properties of bone more than either monotherapy alone by enhancing both quantity and quality of bone. In this study, wildtype (WT) and heterozygous (OIM+/-) male mice from the Osteogenesis Imperfecta (OI) murine model were treated with either RAL, ZOL, or RAL and ZOL from 8 weeks to 16 weeks of age. Combination treatment resulted in higher trabecular architecture, cortical mechanical properties, and cortical fracture toughness in diseased mouse bone. Two fracture toughness properties, direct measures of the tissue’s ability to resist the initiation and propagation of a crack, were significantly improved with combination treatment in OIM+/- compared to control. There was no significant effect on fracture toughness with either monotherapy alone in either genotype. Following the mass-based effects of ZOL, bone volume fraction was significantly higher with combination treatment in both genotypes. Similar results were seen in trabecular number. Combination treatment resulted in higher ultimate stress in both genotypes, with RAL additionally increasing ultimate stress in OIM+/-. RAL and combination treatment in OIM+/- also produced a higher resilience compared to the control. Given no significant changes in cortical geometry, these mechanical alterations were likely driven by the quality-based effects of RAL. In conclusion, this study demonstrates the beneficial effects of using combination therapy to increase bone mass while simultaneously improving tissue quality, especially to enhance the mechanical integrity of diseased bone. Combination therapies could be a future mechanism to improve bone health and combat skeletal fragility on multiple hierarchical levels.
46

Disability Identity and Attitudes towards Prenatal Testing in the Osteogenesis Imperfecta Community

Sullivan, Rachel M. 28 September 2018 (has links)
No description available.
47

The effects of ascorbic acid treatment for Osteogenesis imperfecta /

Winterfeldt, Esther A. January 1970 (has links)
No description available.
48

Clinical, histopathologic and genetic diagnosis in osteogenesis imperfecta and dentinogenesis imperfecta /

Malmgren, Barbro, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
49

Glomerular deposition of homotrimeric type I collagen in the COL1A2 deficient mouse

Brodeur, Amanda C., January 2006 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2006. / Title from title screen of research.pdf file (viewed on December 22, 2006). The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. "May 2006" Vita. Includes bibliographical references.
50

The role of bone morphogenetic protein 2 in SMA-directed angiogenesis during distraction osteogenesis

Cheng, Thomas Wen-Tao 08 April 2016 (has links)
Bone is one of the few organs capable of regeneration after a substantial injury. As the bone heals itself after trauma, the coupling of angiogenesis to osteogenesis is crucial for the restoration of the skeletal tissue. In prior studies we have shown that Bone Morphogenetic Protein 2 (BMP2), a potent agonist for skeletal formation is expressed by vessels making it a prime candidate that links the morphogenesis of the two tissues. To investigate the role of BMP2 in the coordination of vessel and bone formation, we used a tamoxifen inducible Smooth Muscle Actin (SMA) promoter that conditionally expresses Cre recombinases crossed with a BMP2 floxed mouse in order to conditionally delete the BMP2 gene in smooth muscle actin (SMA) expressing cells. Using the mouse femur as our model for bone regeneration, we performed a surgical technique called distraction osteogenesis (DO) where an osteotomy is created followed by distraction or a gradual separation of the two pieces of bone. This primarily promotes intramembranous ossification at the osteotomy site by mechanical stimulation. Tamoxifen treatment started at day 6 and continued throughout the experiment. At post-operative days 3, 7, 12, 17, 24, and 31, we analyzed the bone and vessel formation by plain X-ray, micro-computed tomography (µCT) and vascular contrast enhanced µCT, and quantitative polymerase chain reaction (qPCR) of selective genes. We assessed both the femur and surrounding tissue to obtain qualitative and quantitative assessments for skeletal and vascular formation. Our results demonstrated that the deletion of BMP2 in vascular tissue resulted in a reduction of angiogenesis in vivo followed by a decrease in skeletal tissue development.

Page generated in 0.0456 seconds