Spelling suggestions: "subject:"ostriches -- hutrition"" "subject:"ostriches -- elutrition""
1 |
The effect of energy and protein nutritional levels on production of breeding ostrichesBrand, Zanell January 2002 (has links)
Adequate and appropriate nutrition is essential for the production of high quality commercially farmed animal species. Although South Africa has had a well-established ostrich industry for over a century, little information on ostrich nutrition, in particular the specific nutritional requirements at different stages of production, is available. The industry has consequently relied heavily on data derived from poultry and pigs, but this has often proved to be unsatisfactory for ostriches and has resulted in serious nutritional-related problems. Recent studies on the metabolisable energy of specific components of diet formulations and balanced diets have indicated that ostriches have enhanced digestibility compared with poultry and pigs. At the same time, in the present economic climate, it is necessary to find cost-effective diets for breeding birds without compromising egg and chick production. This study primarily assessed the effect of different dietary protein and energy levels on production parameters and body condition of breeding female and male ostriches. The energy content of the diet appears to be the main constraint to egg production and breeders on low energy diets laid fewer eggs and lost more body condition compared with breeders fed higher energy diets. A diet with 8.5 MJ/kg DM and 10% protein with well balanced amino acids appears to be sufficient for female breeders without compromising production and a diet with 7.5 MJ/kg DM and 10% protein appears suitable for breeding male ostriches. Different dietary energy and protein levels similarly had little or no effect on egg quality and composition. This study also assessed the carry-over effect of the nutritional regime in one year on the production in the following breeding season. Females fed diets as low as 7.5 MJ/kg ME in the previous breeding season produced significantly fewer eggs in the next breeding season, which resulted in lower chick production. Energy had no effect on the percentage infertile eggs or on the initial egg weight. Different levels of dietary protein had no effect on egg production, egg weight, fertility, hatchability and initial chick weight.
|
2 |
Studies to develop a mathematical optimisation model to describe the effect of nutrition on the growth of ostriches (Struthio camelus var. domesticus)Carstens, Petrus Daniel 12 1900 (has links)
Thesis (MScAgric)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The first study (Chapter 3) evaluated the growth response of ostrich chicks on diets
containing three different levels of protein and amino acids. Linear and nonlinear models
were fitted to the data and compared by using Akaike’s information criterion (AIC). The
linear polynomial of the third degree had the lowest AIC value for all three treatments thus
making it the most suitable model for the data. Significant differences were found between
treatments for growth data. The results from this study can aid in describing the growth of
ostriches subjected to assumed optimum feeding conditions.
In the second study (Chapter 4), a range of diets was formulated for the five growth
stages of ostriches (pre-starter, starter, grower, finisher and maintenance) according to their
nutrient requirements. The diets were diluted with wheat straw. Three dilution levels (0%,
10% and 20%) were used for the pre-starter and starter phases, five dilution levels (0%, 15%,
30%, 45% and 60%) were used for the grower and the finisher phases, and five dilution levels
(0%, 20%, 40%, 60% and 80%) were used for the maintenance phase. Weekly intake data
were collected throughout each phase. Feed bulk restricted intake by 21% and 52% at the
10% and 20% dilution level, respectively (P < 0.05) in the pre-starter phase, whereas intake
was not restricted during the starter phase(P > 0.05). Intake was constrained by 39% and 42%
at the 45% and 60% dilution levels in the grower phase, respectively (P < 0.05), and by 17%
and 39% at the 45% and 60% dilution levels (P < 0.05) in the finisher phase, respectively.
Feed bulk restricted intake by 60% and 69% for the 60% and 80% dilution levels (P < 0.05),
respectively, in the maintenance phase. Defining the bulk density that will constrain feed
intake, as established in this study, will aid in least-cost feed formulations, feed intake
modelling and growth predictions. In the third study (Chapter 5) the effect of three different dietary protein (with a
specific associated amino acid content) concentrations on certain production parameters in
growing ostriches were investigated. Significant differences were found for the final live
weight of birds, cold carcass weight, thigh weight as well as for most of the weighed muscles
at slaughter (350 days old). Concerning the growth and feed related parameters, only average
daily gain (ADG) was influenced by dietary treatment (P < 0.05). Results indicated that birds
on the diet with the medium protein performed optimally. One exception is the starter phase
(26 – 47 kg) where chicks on the high protein diet outperformed those on the medium protein
diet. In the fourth study (Chapter 6) the effects of different dietary energy concentrations
on ostrich production parameters were examined in two different trials. The first trial
included measurements from the pre-starter phase through the starter phase until the grower
phase. The second trial was based on the finisher phase per se. Overall dietary levels
provided in the pre-starter, starter and grower phases indicated better growth, FCR, skin size
and grade, thigh weight, live weight, and carcass weight for the birds fed the medium energy
diet. Dietary energy levels provided during the finisher phase indicated that the energy level
above the medium level used improved growth rate and tanned skin size. The gender of the
birds influenced carcass weight, growth rate, and certain feather parameters (P < 0.05).
In the fifth study (Chapter 7) the effect of feather clipping at six to eight months of
age on the production parameters of ostrich chicks were investigated. The study was
conducted in three different trials. In each of the trials the feathers of half the amount of birds
were clipped at six to eight months of age. Significant differences (P < 0.05) were found for
the feed conversion ratio (FCR), the average daily gain (ADG) and for the quantity of
valuable feathers. Results indicated that the growth rate and FCR was better for the birds
which had their feathers clipped at six to eight months of age. Results also showed that the
quantity of feathers with commercial value were significantly higher for the clipped group.
This study showed that there may be an advantage for ostrich producers concerning
the harvesting of feathers at six to eight months of age.
The work in this thesis is a follow up on the framework set by Kritzinger (2011) and
is part of the same project. Most of the results obtained in these studies will be incorporated
in to the mathematical optimisation model of Gous and Brand (2008) for more accurate
predictions concerning feed intake and other production parameters that may lower feeding
costs. / AFRIKAANSE OPSOMMING: Die eerste studie (Hoofstuk 3) evalueer die groei van volstruiskuikens op diëte met drie
verskillende vlakke van proteïene en aminosure. Liniêre en nie-liniêre regressiemodelle is op
die data gepas en met Akaike se inligting kriterium (AIC) vergelyk. Die liniêre polinoom van
die derde graad het die laagste AIC waarde vir al drie behandelings gehad. Daarom is die
voorspellings van hierdie model gebruik om die groeidata te interpreteer. Beduidende
verskille tussen behandelings vir groeidata (P < 0.05) is gevind. Die resultate van hierdie
studie kan help met die beskrywing van die groei van volstruise, onderworpe aan
aangeneemde optimale voedingsbehoeftes.
In die tweede studie (Hoofstuk 4) is 'n verskeidenheid diëte geformuleer vir die vyf
groeistadiums van volstruise (voor-aanvangs, aanvangs, groei, afronding en onderhoud)
volgens hul voedingsbehoeftes. Die diëte is verdun met koringstrooi. Drie verdunningsvlakke
(0%, 10% en 20%) is gebruik vir die voor-aanvangs- en aanvangsfase, vyf verdunningvlakke
(0%, 15%, 30%, 45% en 60%) is gebruik vir die groei- en die afrondingsfase en vyf
verdunningsvlakke (0%, 20%, 40%, 60% en 80%) is gebruik vir die onderhoudsfase.
Weeklikse inname-data is ingesamel gedurende elke fase. In die voor-aanvangsfase het
voerlywigheid (verhoging van ruvesel) inname beperk met 21% en 52% vir die 10% en 20%
verdunningsvlakke (P < 0.05) onderskeidelik, terwyl inname nie beperk is gedurende die
aanvangsfase nie (P > 0.05). Inname is beperk met 39% en 42% op die 45% en 60%
verdunningsvlakke in die groeifase (P < 0.05) onderskeidelik, en met 17% en 39% op die
45% en 60% verdunningsvlakke in die afrondingsfase (P < 0.05), onderskeidelik.
Voerdigtheid het inname beperk met 60% en 69% vir die 60% en 80% verdunningsvlakke,
onderskeidelik, in die onderhoudsfase (P < 0.05). Die definiëring van die digtheid of
ruvoerinhoud van voer wat inname beperk, soos in die studie bepaal, sal help met die
optimering van voerformulasies, voerinname-modellering en groeivoorspellings.
In die derde studie (Hoofstuk 5) is die effek van drie verskillende
dieëtproteïenkonsentrasies (met 'n spesifieke gepaardgaande aminosuurinhoud) op sekere
produksieparameters in die groei van volstruise ondersoek. Beduidende verskille is gevind vir
die finale lewende gewig, koue karkasmassa, boudgewig sowel as vir die meeste van die
geweegde spiere van voëls op slagouderdom (350 dae oud). Met betrekking tot die groei en
voedingsverwante parameters, is slegs die gemiddelde daaglikse toename (GDT) beïnvloed
deur die dieet (P < 0.05). Resultate het aangedui dat voëls op die medium-proteïendieet optimaal presteer. Een uitsondering is die aanvangsfase (26 – 47 kg), waar kuikens op die
hoë-proteïendieet beter gevaar het as die voëls wat die medium-proteïendieet ontvang het.
In die vierde studie (Hoofstuk 6) is die invloed van verskillende dieet-energiekonsentrasies
op volstruis-produksieparameters in twee verskillende proewe ondersoek. Die
eerste proef het gestrek vanaf die voor-aanvangsfase, deur die aanvangsfase tot en met die
einde van die groeifase. Die tweede proef is gedoen vir die afrondingsfase.
In die voor-aanvangs-, aanvangs- en groeifase is beter groei, voeromsetverhouding
(VOV), velgrootte en -graad, boudgewig, lewende gewig en karkasgewig verkry vir die voëls
wat die standaard-energie dieet ontvang het (P < 0.05). Dieet-energievlakke wat tydens die
afrondingsfase fase verskaf is, het aangedui dat die energievlak bo die medium-vlak
verbeterde groeitempo en gelooide velgrootte tot gevolg het (P < 0.05). Die geslag van die
voëls het ’n invloed gehad op karkasgewig, groei, en sekere veerparameters.
In die vyfde studie (Hoofstuk 7) is die effek van die knip van vere, op die ouderdom
van ses tot agt maande, op die produksieparameters van volstruiskuikens ondersoek. Die
studie is uitgevoer in drie verskillende proewe. In elk van die proewe is die vere van die
helfte van die hoeveelheid voëls geknip op ses tot agt maande ouderdom. Beduidende
verskille is gevind vir die VOV, die gemiddelde daaglikse toename (GDT) en vir die
hoeveelheid waardevolle vere (P < 0.05). Die groeitempo en VOV was beter vir die voëls
waarvan die vere op ses tot agt maande ouderdom geknip is (P < 0.05). Resultate het ook
getoon dat die hoeveelheid waardevolle vere aansienlik hoër was vir die groep waarvan die
vere op ses tot agt maande ouderdom geknip is (P < 0.05). Hierdie studie het getoon dat daar
'n voordeel mag wees vir volstruisprodusente indien vere geknip word op die ouderdom van
ses tot agt maande.
Die werk in hierdie tesis volg op die raamwerk van Kritzinger (2011) en was deel van
dieselfde projek. Die meeste van die resultate wat verkry is in die studies sal in die
wiskundige optimeringsmodel van Gous en Brand (2008) geïnkorporeer word vir meer
akkurate voorspellings van voerinname en produksieparameters wat die voerkostes kan
verlaag.
|
3 |
Effect of dietary energy and protein on the production parameters of slaughter ostriches (Struthio camelus var. domesticus)Viviers, Swys Francois 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: When modern man assumed the responsibility of domesticating animals for his own purposes, he directly accepted the responsibility associated with feeding and caring for them. Considering intensive production systems, nutrition is one of the most important aspects in maintaining healthy livestock as well as ensuring profitability is achieved. This is due to the fact that the feeding of the livestock is often the most expensive overhead cost encountered. In ostrich production systems, nutrition costs total an estimated 70 – 80% of the costs associated with rearing the birds from chick to slaughter. When dissecting the typical composition of these ostrich diets, it becomes evident energy and protein are two of the most important, and abundant, nutrients found. Therefore, this study was conducted to investigate the effects of different concentrations of protein and energy in the diets of slaughter ostriches, on their production parameters.
In the first study (Chapter 3), five diets with different protein concentrations were formulated across the four feeding phases of slaughter ostriches (pre-starter, starter, grower and finisher). Three replications per treatment were conducted resulting in 15 camps of ostriches. Significant differences (P < 0.05) were found in the live weights of the birds at the end of each feeding phase except the finisher phase. In terms of the production parameters, differences (P < 0.05) were found for the dry matter intake (DMI), average daily gain (ADG) and the feed conversion ratio (FCR). Results indicated that the birds on the middle diet (control) and on the diets containing proportionally higher protein concentrations, although not different from each other, consistently outperformed those on diets containing lower concentrations of protein. These trends were also evident when comparing the cold carcass and thigh weights of the treatment birds post-slaughter. Therefore, from a financial standpoint, it could be concluded that increasing the protein content of the diets beyond that level currently used in industry (control) is not sensible.
The second study (Chapter 4) was an evaluation on the primary products harvested from the birds utilized in the first study, namely the feathers, skin and meat. The aim of the investigation was to determine if the dietary protein concentrations had any effect on these products. No differences (P > 0.05) were observed across the feather yields or classes measured, except for the ‘tail feathers’, where the birds fed the lowest protein levels in their diets yielded the fewest. Differences (P < 0.05) were however found in selected skin parameters measured. Decreased dietary protein resulted in smaller wet skin size, smaller sizes of the feather nodules, as well as smaller crust size after the tanning process was completed. However, this had no impact (P > 0.05) on the skin grades achieved. Hence it became clear that dietary protein has an impact on the skin size achieved, which did not translate into differences in skin quality. Similarly, it did not affect the feather yields or quality.
Energy is the most important nutrient in livestock diets as it is the first limiting nutrient influencing intake. Therefore, in the third study (Chapter 5), treatments in the form of five different levels of energy in the diets of ostriches, were investigated. Structurally, the layout was similar to the first study with three replications per treatment yielding 15 camps of ostriches. Significant differences (P < 0.05) were found between the live weights of the birds after the pre-starter phase, but not overall after the completion of the trial. The middle diet (diet 3) containing 14.5 MJ ME/kg displayed the highest gains per day of 216.0 ± 8.08 g per chick. The results of the growth were mirrored in the production parameters (DMI, ADG, FCR), where no differences (P > 0.05) were found for the rest of the feeding phases.
In a follow up investigation of the effects of dietary, this chapter focused on the impact these different energy levels (Chapter 5) had on the primary products harvested after slaughter (Chapter 6). In particular, the feather yield and quality, skin yield and selected quality parameters, as well as the chemical composition of the meat was studied. No differences were found (P > 0.05) across any of the feather yields or classes measured. Concerning the skin yields and quality, similar results were found with no differences (P > 0.05) between the crust sizes or grades. With regards to the proximate composition of the meat, no major effect (P > 0.05) was found as a result of the treatment diets. Therefore, dietary energy content exhibited little influence over the feather, skin and meat parameters measured in this study. / AFRIKAANSE OPSOMMING: Die oomblik toe die nuwerwetse mens die verantwoordelikheid aanvaar het vir die mak maak van diere vir sy eie gebruik, het hy direk die verantwoordelikheid aanvaar wat geassosieer word met hul voeding en versorging. Met inagneming van intensiewe produksiestelsels is voeding een van die belangrikste aspekte in die handhawing van gesonde vee asook om winsgewendheid te verseker. Dit is as gevolg van die feit dat die voeding van diere dikwels die grootste oorhoofse uitgawe is. In volstruisproduksiestelsels bereik die voedingskostes ‘n totale geskatte hoeveelheid van 70 – 80% van die kostes wat geassosieer word met die grootmaak van die voëls vanaf kuiken tot slagvoël. Wanneer die tipiese samestelling van hierdie volstruisdiëte ontleed word, is dit duidelik dat energie en proteïene twee van die mees belangrike en volopste voedingstowwe is wat gevind word. Hierdie studie was dus onderneem om die effek van verskillende konsentrasies proteïene en energie in die diëte van slagvoëls en hulle produksieparameters te ondersoek.
Vir die eerste studie (Hoofstuk 3) is vyf diëte met verskillende proteïenkonsentrasies geformuleer vir die vier voedingsfases van slagvolstruise (voor-aanvangs, aanvangs, groei en afronding). Drie herhalings per behandeling is gebruik wat 15 volstruiskampe tot gevolg gehad het. Betekenisvolle verskille (P < 0.05) in die lewende gewig van die voëls is aan die einde van elke voedingsfase gevind, behalwe vir die afrondingsfase. In terme van die produksieparameters is verskille (P < 0.05) gevind vir die droë materiaalinname (DMI), gemiddelde daaglikse toename (GDT) en die voeromsetverhouding (VOV). Resultate het getoon dat voëls wat die middelste dieet (kontrole) en diëte wat proporsioneel hoër proteïenkonsentrasies bevat het, alhoewel hulle nie van mekaar verskil nie, konsekwent beter presteer het as die wat diëte met laer proteïenkonsentrasies ontvang het. Hierdie tendense is ook waargeneem toe die koue karkas- en dygewigte van die eksperimentele voëls na-doods vergelyk is. Vanuit ‘n finansiële oogpunt kan daar dus tot die gevolgtrekking gekom word dat dit nie sinvol sal wees om die proteïeninhoud van volstruisdiëte te verhoog bo die vlak wat tans in die industrie (kontrole) gebruik word nie.
Tydens die tweede studie (Hoofstuk 4) is die primêre produkte (vere, velle en vleis) wat vanaf die volstruise in die eerste studie geoes is, geëvalueer. Die doel van hierdie studie was om te bepaal of die verskillende proteïenkonsentrasies in die dieet enige effek op hierdie produkte het. Geen verskille (P > 0.05) is by die veeropbrengste of die verskillende veertipes wat gemeet is, waargeneem nie, behalwe vir die stertvere, waar die voëls wat die laagste proteïenvlakke in hulle diëte ontvang het, die laagste opbrengs gelewer het. Verskille (P < 0.05) is egter gevind in die geselekteerde velparameters wat gemeet is. ‘n Vermindering in die proteïenkonsentrasie het ‘n kleiner nat velgrootte tot gevolg gehad, asook ‘n afname in knoppiegrootte nadat die looiproses voltooi is. Hierdie waarneming het egter geen invloed (P > 0.05) op die gradering van die velle gehad nie. Dit het dus duidelik na vore gekom dat die dieetproteïen wel die velgrootte wat bereik is, beïnvloed het, maar nie tot verskille in velkwaliteit gelei het nie. Veeropbrengs en –kwaliteit is ook nie deur die dieetproteïen beïnvloed nie.
Energie is die eerste beperkende voedingskomponent wat voerinname bepaal. Gegewe die groot invloed wat dit op voerinname het, is dit dus die mees belangrike komponent in die dieet van vee. Vandaar dan die derde studie (Hoofstuk 5) waar die behandelings in die vorm van vyf verskillende energievlakke in die diëte van volstruise ondersoek is. Die struktuur en uitleg van die studie was soortgelyk aan die eerste studie met drie herhalings per behandeling wat 15 volstruiskampe tot gevolg gehad het. Betekenisvolle verskille (P < 0.05) is gevind tussen die lewende gewigte van die voëls na die voor-aanvangsfase, maar nie nadat die hele proefneming voltooi is nie. Die middelste dieet (dieet 3) wat 14.5 MJ ME/kg bevat het, het die hoogste toename per dag van 216.0 ± 8.08 g per kuiken opgelewer. Groeiresultate is weerspieël in die produksieparameters (DMI, GDT, VOV), waar geen verskille (P > 0.05) in die res van die voedingsfases gevind is nie.
Tydens ‘n opvolgondersoek rakende die effek van dieet, het hierdie hoofstuk gefokus op die impak wat die verskillende energievlakke (Hoofstuk 5) op die primêre produkte wat na-doods geoes is. Daar is in besonder na die vere-opbrengs en –kwaliteit, velgrootte en geselekteerde kwaliteitparameters, asook die chemiese samestelling van die vleis gekyk. Geen verskille (P > 0.05) is by die veeropbrengste of die verskillende veertipes wat gemeet is, gevind nie. Met betrekking tot die velgroottes en -kwaliteit, is soortgelyke resultate gevind met geen verskille (P > 0.05) tussen die knoppiegrootte en –gradering nie. Met verwysing na die proksimale samestelling van die vleis is geen betekenisvolle effek (P > 0.05) as gevolg van die eksperimentele diëte waargeneem nie. Die inhoud van die dieetenergie het dus ‘n klein invloed op die vere-, vel- en vleisparameters wat in hierdie studie geëvalueer is, gehad.
|
4 |
Determination of the nutrient requirements of breeding ostrichesOlivier, Theodore Riel 03 1900 (has links)
Thesis (MScAgric (Animal Sciences))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The nutrient requirements for breeding ostriches are currently not well-defined. Quantification of the nutrient
requirements will improve the financial wellbeing of the industry. A study of the growth of the reproductive organs
and liver, together with various production studies, were therefore undertaken in order to gain knowledge about
the nutrition of breeding ostriches, thereby quantifying the nutrient requirements of breeding ostriches.
Various studies were conducted to determine the influence of dietary protein, amino acids and energy on
production levels of breeding ostriches.
In a first study, five diets, varying in crude protein (CP) but with a constant energy content of 9.2 MJ ME/kg feed,
were provided at a feed intake level of 2.5 kg/bird/day. The dietary CP levels were 7.5%, 9.1%, 10.8%, 12.3%
and 14.0%. No differences (P>0.05) between treatments (total eggs per female per season) were found for
number of unfertilized eggs (eggs per female per season; 8.9±0.8), dead-in-shell chicks (8.0±0.5), number of
chicks hatched (19.1±1.1) and change in mass of females (-16.2±1.6kg). A tendency was observed for a
difference in total egg production (mean and standard error; 39.1±3.6; P=0.08). The 12.3% CP diet caused the
lowest (P<0.05) change in live mass (-3.8±2kg) for male birds. No interaction (P>0.05) occurred between the
genotype of the bird and the dietary protein concentration for both egg and chick production.
In a second study, six diets varying in ME (MJ ME/kg feed), were provided at an average feed intake level of 3.4
kg/bird/day. The levels were 7.5, 8.0, 8.5, 9.0, 9.5 and 10.0 MJ ME/kg feed respectively. No differences (P>0.05)
were observed for total eggs produced per female per season (44.8±7.8), number of chicks hatched (15.4±4.1), number of infertile eggs (11.5±3.8), number of dead-in-shell eggs (12.1±3.2) and change in mass of females
(10.7±3.6kg). Males increased linearly (y=2.4x + 2.45; R2=0.09; P<0.05) in live mass as the dietary energy
content increased. Two eggs per diet per month were analyzed for crude protein, crude fat and trace elements,
and one egg per diet per month was analyzed for fatty acid composition. Eggs from the first and last month of
the season were subjected to amino acid analysis. Analysis of variance showed no difference in crude protein
and fat (P>0.05) content of eggs between the experimental diets, as well as for the calcium content of eggshells.
The proline content differed (P<0.05) between the diets. The C18:3n-3 (linoleic acid) content of the eggs
increased (P<0.05) amongst the dietary treatments. Crude protein, fat and C18:3n-3 content in eggs increased
(P<0.05) for the number of the egg in the laying cycle.
In a third study, the feed intake of breeding ostriches, as affected by dietary energy content was investigated.
Average feed intake (kg feed/bird/day) was not affected (P>0.05) at any dietary energy level when levels of 8.0,
8.7, 9.4, 10.1, 10.8 and 11.5 MJ ME/kg feed were provided. The mean and standard error was 3.7±0.2kg.
The production of breeding female ostriches was not influenced by dietary ME and protein at these feed intake
levels. Ostrich birds do not have the ability to regulate their feed intake at any dietary energy level as used in this
study. The amount of nutrients deposited in the eggs had no influence on the reproductive efficiency of the
breeding female ostrich. The experiments also revealed that female breeding ostriches were independent of
dietary energy and protein as used in this study for the mean frequency of egg laying at various dietary protein
and energy levels (P>0.05).
In a fourth study, the growth and development of the reproductive organs of female birds at the onset of the
breeding season were investigated. The amount of nutrients needs to be determined in order to support the
growth of the reproductive organs during the breeding season, due to the fact that these organs are linked to
egg production. It was thus necessary to investigate whether the reproductive organs grew and developed
during a season. The first slaughter interval was conducted at the start of the breeding season. The ovary,
oviduct and liver were collected, weighed after each slaughter and analyzed. Ovary and oviduct were analyzed
for crude protein and fat. No differences (P>0.05) were observed between the different slaughter intervals for the
mass, crude protein and fat content of both organs. No trend (P>0.05) in the weight of the oviduct could be
observed over the 49-day period, this weight being highly correlated with body weight; whereas the ovary weight
tended to be correlated with the time after the onset of the breeding period, although the variation in weights,
both within and between weighings, was very high. The variation in the weight of the ovary probably reflects
differences in the laying pattern of individuals. The number of follicles were not affected (P>0.05) by the number
of days after mating. Livers were assessed for crude protein and fat, but no difference (P>0.05) was detected
between the intervals, but the weight difference amongst the slaughter intervals was significant (P<0.05),
suggesting that the ostriches used liver reserves to supplement nutrients that obtained from the diet for the
development of the reproductive organs. This data will be used in an optimising model (Brand & Gous, 2006) to predict the nutrient requirements of female breeding ostriches. This study suggests that the female breeding
ostrich might need additional protein during the first 7 weeks of the breeding season.
Results from Chapter 4 and previous studies were used to calculate the energy, protein and amino acid
requirements for the egg production and maintenance of the breeding female ostrich. Two methods were used to
determine the energy requirement for egg production. The Metabolisable Energy requirement for egg production
(MEe) and efficiency of ME utilization for energy deposition in the egg (ko) was calculated as 12.2 MJ (for an
average size egg of 1.4kg) and 0.8 respectively. The Effective Energy requirement for egg production (EEe) and
maintenance (EEm) was calculated as 15.9 MJ/day and 17.1 MJ/day respectively. Average total daily protein
requirement (TPt) was calculated as 175g day. The amino acid requirements for maintenance and egg
production is also provided, which is lower than previous studies. This study also provides evidence that the nutrient requirements are different for every month of the breeding season. / AFRIKAANSE OPSOMMING: Tans heers daar onsekerheid oor die voedingsbehoeftes van volstruis broeivolstruise. Kwantifisering van die
voedingsbehoeftes sal ‘n finansiële hupstoot aan die industrie gee. ‘n Groeistudie van die reproduksie-organe en
lewer, tesame met ‘n aantal produksie-studies, is uitgevoer om inligting oor die voedingsbehoeftes van volstruis
broeivoëls te versamel. Daarby is die voedingsbehoeftes teoreties bereken.
‘n Aantal studies was uitgevoer om die invloed van dieët proteïen en aminosure en energie op produksie-data te
bepaal.
Eerstens is vyf diëte, wisselend in ru-proteïen (RP) en beperk tot ‘n inname van 2.5 kg/voël/dag, aan
broeivolstruise gevoer. Die RP van elke dieët was 7.5%, 9.1%, 10.8%, 12.3% en 14.0%. Die energiewaarde van
die voer is konstant by 9.2 MJ ME/kg voer gehou. Geen verskille (P>0.05) was tussen die behandelings
waargeneem vir aantal geil eiers (totale eiers geproduseer per voël per seisoen; 8.9±0.8), aantal dood-in-dop
(8.0±0.5), aantal kuikens (19.1±1.1) en verandering in massa van wyfies (-16.2±1.6kg) nie. ‘n Neiging (P=0.08)
is wel waargeneem vir totale aantal eiers geproduseer. Die gemiddelde en standaard fout was 39.1±3.6. Die
12.3% dieët het tot die laagste verandering (P<0.05) in lewendige massa (-3.8±2kg) vir die mannetjies gelei.
Geen interaksie (P>0.05) was tussen die genotipe en dieët proteïen konsentrasie vir beide eier- en kuikenproduksie
opgemerk nie.
In ‘n tweede studie is ses diëte, variërend in ME (MJ ME/kg voer), by ‘n gemiddelde tempo van 3.4 kg/voël/dag
gevoer. Die verskillende ME-vlakke was 7.5, 8.0, 8.5, 9.0, 9.5 en 10.0 MJ ME/kg voer. Geen betekenisvolle
verskille (P>0.05) is vir totale eiers geproduseer per voël per seisoen (44.8±7.8), aantal kuikens uitgebroei
(15.4±4.1), aantal geil eiers (11.5±3.8), aantal dood-in-dop eiers (12.1±3.2) en massa verandering van wyfies (10.7±3.6kg) opgemerk nie. Die mannetjies het toegeneem in liggaamsmassa (P<0.05) soos daar ‘n toename
was in die energievlak van die dieët. Twee eiers per dieët per maand is vir ru-proteïen, vet en spoorelemente, en
een eier per diet per maand vir vetsure ontleed. Eiers van die eerste en laaste maand van die seisoen is ontleed
vir aminosure. Analise van variansie het aangetoon dat daar geen verskille (P>0.05) bestaan vir die ru-proteïen
en vetinhoud van die eiers by die verskillende eksperimentele diëte, asook die kalsiuminhoud van die eierdoppe.
Prolien vlakke het tussen die diëte verskil (P<0.05). Die C18:3n-3 (linoleïensuur) inhoud van die eiers het verskil
(P<0.05) tussen die dieët behandelilngs. Vir die hoeveelste eier in die lê siklus het die ru-proteïen-, vet- en
C18:3n-3 inhoud van die eiers verhoog (P<0.05).
In ‘n derde studie is ondersoek ingestel na die voerinname van die broeivolstruise soos moontlik beïnvloed deur
die energievlak van die dieët. Gemiddelde voerinname (kg voer/voël/dag) is nie (P>0.05) deur die verskillende
dieët energie vlakke van 8.0, 8.7, 9.4, 10.1, 10.8 en 11.5 MJ ME/kg voer beïnvloed nie. Die gemiddelde en
standaardfout was 3.7±0.2kg.
Die produksie van broeivolstruise nie deur verskillende dieëtvlakke van proteïen en energie by vlakke soos
gevoer in hierdie studie geraak nie. Broeivolstruise in hierdie studie het nie die vermoë gehad om hul
voerinname te beheer by enige dieët energievlak soos gebruik nie. Die aantal nutriënte wat in die eiers neergelê
is, het geen bydrae tot die reproduksievermoë van die wyfie gehad nie. Die studie het verder bewys dat die
gemiddelde frekwensie van eier-lê by wyfies onafhanklik was by dieët-energie en -proteïenvlakke (P>0.05) soos
in hierdie studie gebruik.
In ‘n vierde studie is die groei en ontwikkeling van die reproduksie-organe van die wyfies bestudeer tydens die
aanvang van die broeiseisoen. Die hoeveelheid of konsentrasie van voedingstowwe moes bepaal word om die
groei van die reproduksie-organe te ondersteun tydens die broeiseisoen, omdat hierdie organe aan
eierproduksie gekoppel is. ‘n Studie is derhalwe uitgevoer om te bepaal tot watter mate die reproduksie organe
groei en ontwikkel tydens die broeiseisoen. Die eerste slagting is uitgevoer op die dag van afkamp. Die ovaria,
ovidukt en lewer is versamel, geweeg en ontleed. Die ovaria en ovidukt is ontleed vir ru-proteïen en vet. Geen
verskille (P>0.05) is tussen die verskillende slagtings vir die gewig, ru-proteïen en vetinhoud vir beide organe
opgemerk nie. Geen betekenisvolle tendens in die gewig van die ovidukt is waargeneem oor die 49-dae periode
nie, maar die gewig was hoogs gekorreleerd met liggaamsmassa. Ovaria-gewig het geneig om gekorreleerd te
wees met die aantal dae na afkamp. Variasie binne en buite die gewigte was baie hoog. Die aantal follikels
teenwoordig is nie beïnvloed (P>0.05) deur die aantal dae na paring. Die lewers is ontleed vir ruproteïen en vet,
maar geen verskille (P>0.05) is tussen die intervalle opgemerk nie, maar die gewigte van dag 0 en 49 na paring
het verskil (P<0.05). Dit kan aangevoer word dat die voëls moontlik lewer reserwes gebruik het om die
voedingstowwe van die dieët te supplementeer vir die ontwikkeling van die reproduksie-organe. Data uit hierdie
studie kan gebruik word in ‘n optimiseringsmodel (Brand & Gous, 2006) om die voedingsbehoeftes van broeivolstruise te bepaal. Hierdie studie beveel aan dat die broeiwyfie moontlik addisionele proteïen tydens die
eerste sewe weke van die broeiseisoen benodig.
Resultate van Hoofstuk 4 en vorige studies is gebruik om die energie- proteïen- en aminosuurbehoefte vir
eierproduksie en onderhoud van broeivolstruise te bereken. Twee metodes is gebruik om die energiebehoefte
vir eierproduksie te bereken. Metaboliseerbare Energie behoefte vir eierproduksie (MEe) en effektiwiteit van ME
benutting vir energie deponering in eier (ko) is onderskeidelik as 12.2 MJ (vir ‘n eier wat gemiddeld 1.4kg weeg)
en 0.8 bereken. Effektiewe Energie behoefte vir eierproduksie (EEe) en onderhoud (EEm) was onderskeidelik as
15.9 MJ/dag en 17.1 MJ/dag bereken. Die gemiddelde daaglikse proteïenbehoefte (TPt) is as 175g proteïen/dag
bereken. ‘n Aanduiding van die aminosuur behoefte vir onderhoud en eierproduksie word ook gegee, wat laer is as vorige studies.
|
Page generated in 0.1089 seconds