• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Otimização multidisciplinar em projeto de asas flexíveis / Multidisciplinary design optimization of flexible wings

Caixeta Júnior, Paulo Roberto 23 November 2006 (has links)
A indústria aeronáutica vem promovendo avanços tecnológicos em velocidades crescentes, para sobreviver em mercados extremamente competitivos. Neste cenário, torna-se imprescindível o uso de ferramentas de projeto que agilizem o desenvolvimento de novas aeronaves. Os atuais recursos computacionais permitiram um grande aumento no número de ferramentas que auxiliam o trabalho de projetistas e engenheiros. O projeto de uma aeronave é uma tarefa multidisciplinar por essência, o que logo incentivou o desenvolvimento de ferramentas computacionais que trabalhem com várias áreas ao mesmo tempo. Entre elas se destaca a otimização multidisciplinar em projeto, que une métodos de otimização à modelos matemáticos de áreas distintas de um projeto para encontrar soluções de compromisso. O presente trabalho introduz a otimização multidisciplinar em projeto (Multidisciplinary Design Optimization - MDO) e discorre sobre algumas aplicações possíveis desta metodologia. Foi realizada a implementação de um sistema de MDO para o projeto de asas flexíveis, considerando restrições de aeroelasticidade dinâmica e massa estrutural. Como meta, deseja-se encontrar distribuições ideais de rigidezes flexional e torcional da estrutura da asa, para maximizar a velocidade crítica de flutter e minimizar a massa estrutural. Para tanto, foram utilizados um modelo dinâmico-estrutural baseado no método dos elementos finitos, um modelo aerodinâmico não-estacionário baseado na teoria das faixas e nas soluções bidimensionais de Theodorsen, um modelo de previsão de flutter que utiliza o método K e, por fim, um otimizador baseado no método de algoritmos genéticos (AGs). São apresentados os detalhes empregados em cada modelo, as restrições aplicadas e a maneira como eles interagem ao longo da otimização. É feita uma análise para a escolha dos parâmetros de otimização por AG e em seguida a avaliação de dois casos, para verificação da funcionalidade do sistema implementado. Os resultados obtidos demonstram uma metodologia eficiente, que é capaz de buscar soluções ótimas para problemas propostos, que com devidos ajustes pode ter enorme valor para acelerar o desenvolvimento de novas aeronaves. / The aeronautical industry is always trying to speed up technological advances in order to survive in extremely competitive markets. In this scenario, the use of design tools to accelerate the development of new aircraft becomes essential. Current computational resources allow greater increase in the number of design tools to assist the work of aeronautical engineers. In essence, the design of an aircraft is a multidisciplinary task, which stimulates the development of computational tools that work with different areas at the same time. Among them, the multidisciplinary design optimization (MDO) can be distinguished, which combines optimization methods to mathematical models of distinct areas of a design to find compromise solutions. The present work introduces MDO and discourses on some possible applications of this methodology. The implementation of a MDO system for the design of flexible wings, considering dynamic aeroelasticity restrictions and the structural mass, was carried out. As goal, it is desired to find ideal flexional and torsional stiffness distributions of the wing structure, that maximize the critical flutter speed and minimize the structural mass. To do so, it was employed a structural dynamics model based on the finite element method, a nonstationary aerodynamic model based on the strip theory and Theodorsen’s two-dimensional solutions, a flutter prediction model based on the K method and a genetic algorithm (GA). Details on the model, restrictions applied and the way the models interact to each other through the optimization are presented. It is made an analysis for choosing the GA optimization parameters and then, the evaluation of two cases to verify the functionality of the implemented system. The results obtained illustrate an efficient methodology, capable of searching optimal solutions for proposed problems, that with the right adjustments can be of great value to accelerate the development of new aircraft.
2

Otimização multidisciplinar em projeto de asas flexíveis / Multidisciplinary design optimization of flexible wings

Paulo Roberto Caixeta Júnior 23 November 2006 (has links)
A indústria aeronáutica vem promovendo avanços tecnológicos em velocidades crescentes, para sobreviver em mercados extremamente competitivos. Neste cenário, torna-se imprescindível o uso de ferramentas de projeto que agilizem o desenvolvimento de novas aeronaves. Os atuais recursos computacionais permitiram um grande aumento no número de ferramentas que auxiliam o trabalho de projetistas e engenheiros. O projeto de uma aeronave é uma tarefa multidisciplinar por essência, o que logo incentivou o desenvolvimento de ferramentas computacionais que trabalhem com várias áreas ao mesmo tempo. Entre elas se destaca a otimização multidisciplinar em projeto, que une métodos de otimização à modelos matemáticos de áreas distintas de um projeto para encontrar soluções de compromisso. O presente trabalho introduz a otimização multidisciplinar em projeto (Multidisciplinary Design Optimization - MDO) e discorre sobre algumas aplicações possíveis desta metodologia. Foi realizada a implementação de um sistema de MDO para o projeto de asas flexíveis, considerando restrições de aeroelasticidade dinâmica e massa estrutural. Como meta, deseja-se encontrar distribuições ideais de rigidezes flexional e torcional da estrutura da asa, para maximizar a velocidade crítica de flutter e minimizar a massa estrutural. Para tanto, foram utilizados um modelo dinâmico-estrutural baseado no método dos elementos finitos, um modelo aerodinâmico não-estacionário baseado na teoria das faixas e nas soluções bidimensionais de Theodorsen, um modelo de previsão de flutter que utiliza o método K e, por fim, um otimizador baseado no método de algoritmos genéticos (AGs). São apresentados os detalhes empregados em cada modelo, as restrições aplicadas e a maneira como eles interagem ao longo da otimização. É feita uma análise para a escolha dos parâmetros de otimização por AG e em seguida a avaliação de dois casos, para verificação da funcionalidade do sistema implementado. Os resultados obtidos demonstram uma metodologia eficiente, que é capaz de buscar soluções ótimas para problemas propostos, que com devidos ajustes pode ter enorme valor para acelerar o desenvolvimento de novas aeronaves. / The aeronautical industry is always trying to speed up technological advances in order to survive in extremely competitive markets. In this scenario, the use of design tools to accelerate the development of new aircraft becomes essential. Current computational resources allow greater increase in the number of design tools to assist the work of aeronautical engineers. In essence, the design of an aircraft is a multidisciplinary task, which stimulates the development of computational tools that work with different areas at the same time. Among them, the multidisciplinary design optimization (MDO) can be distinguished, which combines optimization methods to mathematical models of distinct areas of a design to find compromise solutions. The present work introduces MDO and discourses on some possible applications of this methodology. The implementation of a MDO system for the design of flexible wings, considering dynamic aeroelasticity restrictions and the structural mass, was carried out. As goal, it is desired to find ideal flexional and torsional stiffness distributions of the wing structure, that maximize the critical flutter speed and minimize the structural mass. To do so, it was employed a structural dynamics model based on the finite element method, a nonstationary aerodynamic model based on the strip theory and Theodorsen’s two-dimensional solutions, a flutter prediction model based on the K method and a genetic algorithm (GA). Details on the model, restrictions applied and the way the models interact to each other through the optimization are presented. It is made an analysis for choosing the GA optimization parameters and then, the evaluation of two cases to verify the functionality of the implemented system. The results obtained illustrate an efficient methodology, capable of searching optimal solutions for proposed problems, that with the right adjustments can be of great value to accelerate the development of new aircraft.
3

Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos / Multidisciplinary design optimization of flexible wings using metamodels

Caixeta Júnior, Paulo Roberto 11 August 2011 (has links)
A Otimização Multidisciplinar em Projeto (em inglês, Multidisciplinary Design Optimization - MDO) é uma ferramenta de projeto importante e versátil e seu uso está se expandindo em diversos campos da engenharia. O foco desta metodologia é unir disciplinas envolvidas no projeto para que trabalhem suas variáveis concomitantemente em um ambiente de otimização, para obter soluções melhores. É possível utilizar MDO em qualquer fase do projeto, seja a fase conceitual, preliminar ou detalhada, desde que os modelos numéricos sejam ajustados às necessidades de cada uma delas. Este trabalho descreve o desenvolvimento de um código de MDO para o projeto conceitual de asas flexíveis de aeronaves, com restrição quanto ao fenômeno denominado flutter. Como uma ferramenta para o projetista na fase conceitual, os modelos numéricos devem ser razoavelmente precisos e rápidos. O intuito deste estudo é analisar o uso de metamodelos para a previsão do flutter de asas de aeronaves no código de MDO, ao invés de um modelo convencional, o que pode alterar significativamente o custo computacional da otimização. Para este fim são avaliados três técnicas diferentes de metamodelagem, que foram escolhidas por representarem duas classes básicas de metamodelos, a classe de métodos de interpolação e a de métodos de aproximação. Para representá-las foram escolhidos o método de interpolação por funções de base radial e o método de redes neurais artificiais, respectivamente. O terceiro método, que é considerado um método híbrido dos dois anteriores, é chamado de redes neurais por funções de bases radiais e é uma tentativa de acoplar as características de ambos em um único metamodelo. Os metamodelos são preparados utilizando um código para solução aeroelástica baseado no método dos elementos finitos acoplado com um modelo aerodinâmico linear de faixas. São apresentados resultados de desempenho dos três metamodelos, de onde se pode notar que a rede neural artificial é a mais adequada para previsão de flutter. O processo de MDO é realizado com o uso de um algoritmo genético multi-objetivo baseado em não-dominância, cujos objetivos são a maximização da velocidade crítica de flutter e a minimização da massa estrutural. Dois estudos de caso são apresentados para avaliar o desempenho do código de MDO, revelando que o processo global de otimização realiza de fato a busca pela fronteira de Pareto. / The Multidisciplinary Design Optimization, MDO, is an important and versatile design tool and its use is spreading out in several fields of engineering. The focus of this methodology is to put together disciplines involved with the design to work all their variables concomitantly, at an optimization environment to obtain better solutions. It is possible to use MDO in any stage of the design process, that is in the conceptual, preliminary or detailed design, as long as the numerical models are fitted to the needs of each of these stages. This work describes the development of a MDO code for the conceptual design of flexible aircraft wings, with restrictions regarding the phenomenon called flutter. As a tool for the designer at the conceptual stage, the numerical models must be fairly accurate and fast. The aim of this study is to analyze the use of metamodels for the flutter prediction of aircraft wings in the MDO code, instead of a conventional model itself, what may affect significantly the computational cost of the optimization. For this purpose, three different metamodeling techniques have been evaluated, representing two basic metamodel classes, that are, the interpolation and the approximation class. These classes are represented by the radial basis function interpolation method and the artificial neural networks method, respectively. The third method, which is considered as a hybrid of the other two, is called radial basis function neural networks and is an attempt of coupling the features of both in single code. Metamodels are prepared using an aeroelastic code based on finite element model coupled with linear aerodynamics. Results of the three metamodels performance are presented, from where one can note that the artificial neural network is best suited for flutter prediction. The MDO process is achieved using a non-dominance based multi-objective genetic algorithm, whose objectives are the maximization of critical flutter speed and minimization of structural mass. Two case studies are presented to evaluate the performance of the MDO code, revealing that overall optimization process actually performs the search for the Pareto frontier.
4

OMPP para projeto conceitual de aeronaves, baseado em heurísticas evolucionárias e de tomadas de decisões / OMPP for conceptual design of aircraft based on evolutionary heuristics and decision making

Abdalla, Alvaro Martins 30 October 2009 (has links)
Este trabalho consiste no desenvolvimento de uma metodologia de otimização multidisciplinar de projeto conceitual de aeronaves. O conceito de aeronave otimizada tem como base o estudo evolutivo de características das categorias imediatas àquela que se propõe. Como estudo de caso, foi otimizada uma aeronave de treinamento militar que faça a correta transição entre as fases de treinamento básico e avançado. Para o estabelecimento dos parâmetros conceituais esse trabalho integra técnicas de entropia estatística, desdobramento da função de qualidade (QFD), aritmética fuzzy e algoritmo genético (GA) à aplicação de otimização multidisciplinar ponderada de projeto (OMPP) como metodologia de projeto conceitual de aeronaves. Essa metodologia reduz o tempo e o custo de projeto quando comparada com as técnicas tradicionais existentes. / This work is concerned with the development of a methodology for multidisciplinary optimization of the aircraft conceptual design. The aircraft conceptual design optimization was based on the evolutionary simulation of the aircraft characteristics outlined by a QFD/Fuzzy arithmetic approach where the candidates in the Pareto front are selected within categories close to the target proposed. As a test case a military trainer aircraft was designed target to perform the proper transition from basic to advanced training. The methodology for conceptual aircraft design optimization implemented in this work consisted on the integration of techniques such statistical entropy, quality function deployment (QFD), arithmetic fuzzy and genetic algorithm (GA) to the weighted multidisciplinary design optimization (WMDO). This methodology proved to be objective and well balanced when compared with traditional design techniques.
5

OMPP para projeto conceitual de aeronaves, baseado em heurísticas evolucionárias e de tomadas de decisões / OMPP for conceptual design of aircraft based on evolutionary heuristics and decision making

Alvaro Martins Abdalla 30 October 2009 (has links)
Este trabalho consiste no desenvolvimento de uma metodologia de otimização multidisciplinar de projeto conceitual de aeronaves. O conceito de aeronave otimizada tem como base o estudo evolutivo de características das categorias imediatas àquela que se propõe. Como estudo de caso, foi otimizada uma aeronave de treinamento militar que faça a correta transição entre as fases de treinamento básico e avançado. Para o estabelecimento dos parâmetros conceituais esse trabalho integra técnicas de entropia estatística, desdobramento da função de qualidade (QFD), aritmética fuzzy e algoritmo genético (GA) à aplicação de otimização multidisciplinar ponderada de projeto (OMPP) como metodologia de projeto conceitual de aeronaves. Essa metodologia reduz o tempo e o custo de projeto quando comparada com as técnicas tradicionais existentes. / This work is concerned with the development of a methodology for multidisciplinary optimization of the aircraft conceptual design. The aircraft conceptual design optimization was based on the evolutionary simulation of the aircraft characteristics outlined by a QFD/Fuzzy arithmetic approach where the candidates in the Pareto front are selected within categories close to the target proposed. As a test case a military trainer aircraft was designed target to perform the proper transition from basic to advanced training. The methodology for conceptual aircraft design optimization implemented in this work consisted on the integration of techniques such statistical entropy, quality function deployment (QFD), arithmetic fuzzy and genetic algorithm (GA) to the weighted multidisciplinary design optimization (WMDO). This methodology proved to be objective and well balanced when compared with traditional design techniques.
6

Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos / Multidisciplinary design optimization of flexible wings using metamodels

Paulo Roberto Caixeta Júnior 11 August 2011 (has links)
A Otimização Multidisciplinar em Projeto (em inglês, Multidisciplinary Design Optimization - MDO) é uma ferramenta de projeto importante e versátil e seu uso está se expandindo em diversos campos da engenharia. O foco desta metodologia é unir disciplinas envolvidas no projeto para que trabalhem suas variáveis concomitantemente em um ambiente de otimização, para obter soluções melhores. É possível utilizar MDO em qualquer fase do projeto, seja a fase conceitual, preliminar ou detalhada, desde que os modelos numéricos sejam ajustados às necessidades de cada uma delas. Este trabalho descreve o desenvolvimento de um código de MDO para o projeto conceitual de asas flexíveis de aeronaves, com restrição quanto ao fenômeno denominado flutter. Como uma ferramenta para o projetista na fase conceitual, os modelos numéricos devem ser razoavelmente precisos e rápidos. O intuito deste estudo é analisar o uso de metamodelos para a previsão do flutter de asas de aeronaves no código de MDO, ao invés de um modelo convencional, o que pode alterar significativamente o custo computacional da otimização. Para este fim são avaliados três técnicas diferentes de metamodelagem, que foram escolhidas por representarem duas classes básicas de metamodelos, a classe de métodos de interpolação e a de métodos de aproximação. Para representá-las foram escolhidos o método de interpolação por funções de base radial e o método de redes neurais artificiais, respectivamente. O terceiro método, que é considerado um método híbrido dos dois anteriores, é chamado de redes neurais por funções de bases radiais e é uma tentativa de acoplar as características de ambos em um único metamodelo. Os metamodelos são preparados utilizando um código para solução aeroelástica baseado no método dos elementos finitos acoplado com um modelo aerodinâmico linear de faixas. São apresentados resultados de desempenho dos três metamodelos, de onde se pode notar que a rede neural artificial é a mais adequada para previsão de flutter. O processo de MDO é realizado com o uso de um algoritmo genético multi-objetivo baseado em não-dominância, cujos objetivos são a maximização da velocidade crítica de flutter e a minimização da massa estrutural. Dois estudos de caso são apresentados para avaliar o desempenho do código de MDO, revelando que o processo global de otimização realiza de fato a busca pela fronteira de Pareto. / The Multidisciplinary Design Optimization, MDO, is an important and versatile design tool and its use is spreading out in several fields of engineering. The focus of this methodology is to put together disciplines involved with the design to work all their variables concomitantly, at an optimization environment to obtain better solutions. It is possible to use MDO in any stage of the design process, that is in the conceptual, preliminary or detailed design, as long as the numerical models are fitted to the needs of each of these stages. This work describes the development of a MDO code for the conceptual design of flexible aircraft wings, with restrictions regarding the phenomenon called flutter. As a tool for the designer at the conceptual stage, the numerical models must be fairly accurate and fast. The aim of this study is to analyze the use of metamodels for the flutter prediction of aircraft wings in the MDO code, instead of a conventional model itself, what may affect significantly the computational cost of the optimization. For this purpose, three different metamodeling techniques have been evaluated, representing two basic metamodel classes, that are, the interpolation and the approximation class. These classes are represented by the radial basis function interpolation method and the artificial neural networks method, respectively. The third method, which is considered as a hybrid of the other two, is called radial basis function neural networks and is an attempt of coupling the features of both in single code. Metamodels are prepared using an aeroelastic code based on finite element model coupled with linear aerodynamics. Results of the three metamodels performance are presented, from where one can note that the artificial neural network is best suited for flutter prediction. The MDO process is achieved using a non-dominance based multi-objective genetic algorithm, whose objectives are the maximization of critical flutter speed and minimization of structural mass. Two case studies are presented to evaluate the performance of the MDO code, revealing that overall optimization process actually performs the search for the Pareto frontier.

Page generated in 0.1395 seconds