Spelling suggestions: "subject:"outlining"" "subject:"outlinings""
1 |
Programmed instruction in outliningPistor, Ellen Hayes, Rivin, Marcia Toby January 1963 (has links)
Thesis (Ed.M.)--Boston University / The purpose ot this study is to determine whether the skill ot outlining could be taught successfully at the fifth grade level by means of programmed instruction.
|
2 |
Improving Introductory Computer Science Education with DRaCORyu, Mike Dongyub 01 June 2018 (has links) (PDF)
Today, many introductory computer science courses rely heavily on a specific programming language to convey fundamental programming concepts. For beginning students, the cognitive capacity required to operate with the syntactic forms of this language may overwhelm their ability to formulate a solution to a program.
We recognize that the introductory computer science courses can be more effective if they convey fundamental concepts without requiring the students to focus on the syntax of a programming language. To achieve this, we propose a new teaching method based on the Design Recipe and Code Outlining (DRaCO) processes. Our new pedagogy capitalizes on the algorithmic intuitions of novice students and provides a tool for students to externalize their intuitions using techniques they are already familiar with, rather than with the syntax of a specific programming language. We validate the effectiveness of our new pedagogy by integrating it into an existing CS1 course at California Polytechnic State University, San Luis Obispo. We find that the our newly proposed pedagogy shows strong potential to improve students’ ability to program.
|
3 |
Development of computer-based algorithms for unsupervised assessment of radiotherapy contouringYang, Huiqi January 2019 (has links)
INTRODUCTION: Despite the advances in radiotherapy treatment delivery, target volume delineation remains one of the greatest sources of error in the radiotherapy delivery process, which can lead to poor tumour control probability and impact clinical outcome. Contouring assessments are performed to ensure high quality of target volume definition in clinical trials but this can be subjective and labour-intensive. This project addresses the hypothesis that computational segmentation techniques, with a given prior, can be used to develop an image-based tumour delineation process for contour assessments. This thesis focuses on the exploration of the segmentation techniques to develop an automated method for generating reference delineations in the setting of advanced lung cancer. The novelty of this project is in the use of the initial clinician outline as a prior for image segmentation. METHODS: Automated segmentation processes were developed for stage II and III non-small cell lung cancer using the IDEAL-CRT clinical trial dataset. Marker-controlled watershed segmentation, two active contour approaches (edge- and region-based) and graph-cut applied on superpixels were explored. k-nearest neighbour (k-NN) classification of tumour from normal tissues based on texture features was also investigated. RESULTS: 63 cases were used for development and training. Segmentation and classification performance were evaluated on an independent test set of 16 cases. Edge-based active contour segmentation achieved highest Dice similarity coefficient of 0.80 ± 0.06, followed by graphcut at 0.76 ± 0.06, watershed at 0.72 ± 0.08 and region-based active contour at 0.71 ± 0.07, with mean computational times of 192 ± 102 sec, 834 ± 438 sec, 21 ± 5 sec and 45 ± 18 sec per case respectively. Errors in accuracy of irregularly shaped lesions and segmentation leakages at the mediastinum were observed. In the distinction of tumour and non-tumour regions, misclassification errors of 14.5% and 15.5% were achieved using 16- and 8-pixel regions of interest (ROIs) respectively. Higher misclassification errors of 24.7% and 26.9% for 16- and 8-pixel ROIs were obtained in the analysis of the tumour boundary. CONCLUSIONS: Conventional image-based segmentation techniques with the application of priors are useful in automatic segmentation of tumours, although further developments are required to improve their performance. Texture classification can be useful in distinguishing tumour from non-tumour tissue, but the segmentation task at the tumour boundary is more difficult. Future work with deep-learning segmentation approaches need to be explored.
|
Page generated in 0.0406 seconds