Spelling suggestions: "subject:"ovarialcancer"" "subject:"ovariancancer""
51 |
Identification of DLX1 as a FOXM1 downstream target in mediating ovarian cancer oncogenesisHui, Wing-yee, 許穎儀 January 2012 (has links)
Emerging evidences have documented that aberrant expression of FOXM1 is closely associated with human cancers. A recent comprehensive genome analysis has revealed that FOXM1 signaling is one of the major pathways involved in ovarian cancer oncogenesis. However, the regulatory network of FOXM1 in exerting the metastatic phenotypes remains unknown. Therefore, the identification of FOXM1 downstream targets will assist in understanding of its molecular mechanism in ovarian cancer oncogenesis.
In this study, by bioinformatics and a series of functional analyses, we identified DLX1 as a novel target of FOXM1. Our results clearly demonstrated that enforced expression of FOXM1 (FOXM1B and FOXM1C) could increase DLX1 in mRNA and protein levels. Conversely, depletion of FOXM1 by Thiostrepton (FOXM1 specific inhibitor) or RNAi knockdown could reduce DLX1 expression. Importantly, we demonstrated that the changes of DLX1 expression were in concomitant with the expression of a positive control gene, Cyclin-D1. Additionally, the luciferase promoter assay further showed that there are two conserved FOXM1 binding sites TFBS1 and TFBS2 which located at -61~-52bp upstream and -737~727bp upstream of the transcription factor binding sites (TSS) of DLX1 promoter respectively. In comparison of two binding sites, the more conserved binding site, TFBS1, seems have higher importance of FOXM1 binding in DLX1 transcriptional activation.
Furthermore, our study using immunohistochemical and Q-PCR analyses showed that DLX1 was frequently up-regulated in ovarian cancer samples. Noticeably, clinicopathological analysis revealed that the upregulated DLX1 was significantly associated with not only the overexpressed FOXM1 (P=0.001) but also high grade ovarian cancer (P<0.001). Previous studies have reported that DLX1 is a homeobox transcription factor controlling neuron migration and proliferation in embryogenesis. However, the oncogenic functions of DLX1 are rarely reported. In this study, we revealed that DLX1 could promote ovarian cancer cell proliferation and cell migration which are the main phenomena found in high grade tumors. To the best of our knowledge, this is the first report showing the regulation of FOXM1 on DLX1 and the metastatic functions exerted by DLX1 in ovarian cancer cells. Although ovarian cancer cells are epithelial cell type which is different from neurons, the similar cell functions derived from DLX1 reflecting that both cell types share the similar signaling pathway of DLX1. However, further investigation on the downstream network of DLX1 and the in vivo tumorigenic capacities in ovarian cancer cells are warranted.
To conclude, we have identified DLX1 as a novel target of FOXM1 and frequently up-regulated in high grade ovarian cancer. The in vitro tumorigenic assay demonstrated DLX1 could promote cell proliferation and cell migration which are the metastatic properties usually found in high grade ovarian cancer. Therefore, these data highlight the possibilities of using DLX1 as a biomarker and therapeutic target in combating ovarian cancer in the future. / published_or_final_version / Obstetrics and Gynaecology / Master / Master of Philosophy
|
52 |
TAp73α enhances the cellular sensitivity to cisplatin in ovarian cancer cells via the JNK signaling pathwayZhang, Pingde., 张萍德. January 2011 (has links)
Ovarian cancer is the most lethal gynecological malignancy. Most of ovarian
cancer patients relapse and subsequently die due to the development of resistance
to chemotherapy. P73 belongs to the tumor suppressor p53 family. Like p53, the
transcriptionally active TAp73 can bind specifically to p53 responsive elements
and transactivates some of the p53 target genes, and finally leads to cell cycle
arrest and apoptosis. TAp73 can be induced by DNA damage to enhance cellular
sensitivity to anticancer agents in human cancer cells. However, the functions of
TAp73 in ovarian cancer cells and the role in the regulation of cellular response to
commonly used chemotherapeutic agents cisplatin are still poorly understood. The
aims of this study were to examine the functions of TAp73 in ovarian cancer cells
and its role in cellular response to cisplatin, as well as the relationship between
TAp73 and p53 in ovarian cancer cells.
Functional studies showed that over-expression of TAp73alpha (TAp73α)
inhibited cell proliferation, colony formation ability and anchorage-independent
growth of ovarian cancer cells, and this was irrespective of p53 expression status.
In addition, TAp73α inhibited cell growth by arresting cell cycle at G2/M phase
and up-regulating the expressions of G2/M regulators of p21, 14-3-3sigma and
GADD45α.
TAp73α enhanced the cellular sensitivity to cisplatin through the activation of
JNK signaling pathway, at least partially, in ovarian cancer cells. TAp73α
activated the JNK pathway through the up-regulation of its target gene GADD45α
and subsequent activation of MKK4, the JNK up-stream kinase. Inhibition of JNK
activity by a specific inhibitor (SP600125) or small interfering RNAs (siRNAs)
significantly abrogated TAp73-mediated apoptosis induced by cisplatin. Moreover,
the activations of MKK4, JNK and c-Jun were abolished when GADD45α was
knocked down by siRNAs, and the JNK-dependent apoptosis was not observed.
Collectively, these results supported that TAp73α was able to mediate apoptotic
response to cisplatin through the GADD45α/MKK4/JNK signaling pathway,
which was respective of p53 expression status.
Further investigation on the relationship between TAp73α and p53
demonstrated that TAp73α increased p53 protein, but not mRNA expression by
attenuating p53 protein degradation in wild-type p53 ovarian cancer cells.
TAp73α could directly interact with p53 protein, which might interfere with the
binding ability of MDM2 to p53, and consequently block the p53 protein
degradation. In addition, TAp73α inactivated the Akt and ERK pathways and
activated the p38 pathway in response to cisplatin in wild-type p53 OVCA433,
but not in null-p53 SKOV3 cells, suggesting that the effect of TAp73α on these
pathways might be p53-dependent. These results indicated that a functional
cooperation of TAp73α and p53, to some extent, existed in ovarian cancer cells.
In conclusion, this study demonstrated that TAp73α acted as a tumor
suppressor in ovarian carcinogenesis. It promoted the cellular sensitivity to
cisplatin via, at least partially, the activation of JNK signaling pathway. These
TAp73α functions were irrespective of p53 expression. In addition, TAp73α was
able to bind to p53 and increase p53 expression. / published_or_final_version / Obstetrics and Gynaecology / Doctoral / Doctor of Philosophy
|
53 |
p70 S6 kinase regulation of Mdm2 and p53 in ovarian cancer cells during stress conditionsYam, Hin-cheung, Bill., 任憲章. January 2011 (has links)
Ovarian cancer is a leading cause of death among of gynecological cancers. Current
therapies are ineffective with a poor 5-year survival of only ~25%. p70 S6 kinase (p70
S6K) is a downstream target of the phosphatidylinositol 3-kinase pathway and is
frequently activated in human ovarian cancer. However, the molecular targets and
signaling pathways by which p70 S6K may affect tumor development and progression
are poorly understood. Interestingly, in the laboratory, Mdm2, an important negative
regulator of the p53 tumor suppressor, was identified in a yeast two hybrid screening of
potential interacting partners for p70 S6K. In this study, I aimed to investigate the
specific interaction of p70 S6K and Mdm2 and determine how this may contribute to
ovarian tumorigenesis. Using a co-immunoprecipitation assay, the in vivo interaction of
p70 S6K and Mdm2 in human ovarian cancer cells was confirmed. Upon UV-induced
genotoxic stress, p70 S6K activation was associated with Mdm2 phosphorylation on
S166 and subsequent p53 accumulation. This could be reversed by the use of rapamycin
and p70 S6K siRNA to inhibit its kinase activity and expression respectively, confirming
that the effect was p70 S6K specific. Conversely, ectopic expression of wildtype p70
S6K or a constitutively active mutant of p70 S6K, D3E-E389 (D3E) was sufficient to
induce phosphorylation of Mdm2. Moreover, the p70 S6K mediated activation of Mdm2
was independent of p53 mutations. Similar results were observed upon other stress
challenges such as hypoxia using hypoxia mimicking agent desferrioxamine (DFX).
These findings identify Mdm2 as a new target of p70 S6K and reveal that p70 S6K
intervenes the Mdm2-p53 regulatory loop in ovarian cancer, which may provide a
survival advantage to cancer cells under stress conditions. / published_or_final_version / Biological Sciences / Master / Master of Philosophy
|
54 |
Mechanistic and functional characterization of bitter melon extract (BME) and its bioactive component, MAP30, in combating ovarian cancer oncogenesis and chemoresistanceYung, Ming-ho, 容銘浩 January 2013 (has links)
Ovarian carcinoma is one of the most leading causes of cancer death among all gynaecologic malignancies worldwide. Although there are advances in cancer treatment for the last decades, the curative rate of this disease is just modestly improved. Chemoresistance is the major obstacle in clinical management of ovarian cancer nowadays. Thus, it is an urgent need for exploring effective alternative therapeutic strategies for ovarian cancer patients with advanced or recurrent disease. Emerging evidence has suggested that targeting cancer cell metabolism is the most promising molecular therapeutic approach in combating human cancers. Recently, the application of pharmaceutical AMPK activators is a plausible approach in selectively and specifically killing cancer cells without hampering normal cells. However, these pharmaceutical AMPK activators have many side-effects. Therefore, searching for replaceable reagents from nutraceuticals is a “new vista”. Bitter melon and its bioactive components are proposed to be natural activator of AMPK not only to reduce triglycerides levels in hyperlipidemic diabetic or insulin-resistant rodents but also to suppress human cancer cell growth specifically without toxicity to normal cells.
In this study, the anti-cancer effect and molecular mechanism of bitter melon extract (BME) and one of its bioactive components, MAP30, on ovarian cancer cells were examined. Upon treatment of BME and MAP30, ovarian cancer cells showed a drastic reduction in cell proliferation and an increase of cell apoptosis in a dose dependent manner. Intriguingly, co-treatment of BME or MAP30 could enhance cisplatin-induced cell cytotoxicity in ovarian cancer cells. On the other hand, tumor microenvironement has been known as a key factor promoting cancer progression and chemoresistance. Results herein showed that BME or MAP30 could inhibit cell growth, cell migration and invasion of ovarian cancer cells mediated by omentum conditioned medium (OCM), as well as enhanced cisplatin-mediated cell cytotoxicity in a xenograft mouse tumour model.
Mechanistic studies revealed that the inhibitory effect of BME and MAP30 was concomitantly associated with up-regulated AMPK activity but reduced expression of phospho-AKT, phospho-ERK and FOXM1. Such effects were similar to the functions of common AMPK activators e.g. AICAR, A23187, metformin or hypoxic stress, indicating that BME and MAP30 functions as natural AMPK activators in suppressing cancer cells growth through activating AMPK activity and inhibiting AKT/ERK/FOXM1 signaling cascade. Importantly, this study demonstrated that BME and MAP30 induced AMPK activation through an AMP-independent manner using a pair of isogenic HEK293 cells with overexpression of either the wild-type (WT) or R531G mutant isoform of AMPK2 subunit, implying the significance that BME and MAP30 may not affect the mitochondrial respiration and thus may be more tolerated by patients when used as anti-cancer medications.
Taken together, the findings in this study suggest that the non-toxic BME and MAP30 function as natural AMPK activator in impairing ovarian cancer cell growth and enforcing cisplatin-mediated cell cytotoxicity in ovarian cancer cells through targeting cancer cell metabolism. Thus, BME or MAP30 may be used as a supplement for synergistically enhancing the efficacy of current chemotherapy regimes. / published_or_final_version / Obstetrics and Gynaecology / Doctoral / Doctor of Philosophy
|
55 |
Role of ginsenoside Rb1 and its metabolite compound K in attenuating chemoresistance and tumour-initiating properties of ovarian cancer cellsKala, Shashwati January 2014 (has links)
abstract / Biological Sciences / Master / Master of Philosophy
|
56 |
The role of epoxidation in 4-vinylcyclohexene-induced ovarian toxicity.Smith, Bill J. January 1990 (has links)
The basis for the species difference between B6C3F1 mice (susceptible) and Fischer 344 rats (resistant) to 4- vinylcyclohexene (VcH)-induced ovarian tumorigenicity was investigated. Greater than 95% of a single oral 400 mg/kg dose of [¹⁴C]VCH was eliminated in 48 hr by mice and rats. Approximately 50-60% of the administered dose was excreted in the urine, while the remaining 30-40% of the dose was expired as organically soluble radioactivity. VCH-treated mice had dramatically higher blood concentrations of the VCH metabolite VCH-1,2-epoxide compared to VCH-treated rats. Furthermore, mouse hepatic microsomes catalyzed the conversion of VCH to VCH-1,2-epoxide at greater rates than rat hepatic microsomes. The destruction of oocytes was used as an index of ovarian toxicity to compare the potency of VCH and VCH epoxides in the mouse and rat. VCH markedly reduced the number of small oocytes in mice while no detectable change in oocyte number occurred in rats. Epoxide metabolites of VCH destroyed oocytes in both species at lower doses than VCH. Inhibition of VCH epoxidation reduced VCH-1,2-epoxide blood levels and partially protected mice from VCH-induced ovarian toxicity. Thus, the conversion of VCH to epoxides and the subsequent destruction of oocytes are critical steps in the induction of ovarian tumors by VCH. Rats may be resistant because the amount of VCH converted to epoxides is insufficient to destroy oocytes. The biochemical basis for the species difference in the rate of VCH epoxidation by hepatic microsomes from mice and rats was investigated. studies using inducers and inhibitors of certain cytochrome(s) P450 showed that hepatic microsomes of female mice perform VCH epoxidation at greater rates than rats because of the constitutive expression of P450 IIA and lIB forms. Hepatic microsomes of human females perform VCH epoxidation at lower rates than rats. This suggests that if the rate of epoxidation of VCH by the liver is the most important factor determining susceptibility to VCH toxicity then the rat may better model the response of humans exposed to VCH than mice.
|
57 |
Investigation of the effects and mechanisms of action of a novel vitamin E derivative (alpha-TEA) in combination with Cisplatin, and the resulting reversal of drug resistance in a Cisplatin-resistant human ovarian cancer cell line, Cp70Anderson, Kristen Marie 23 June 2011 (has links)
Not available / text
|
58 |
Genetic susceptibility to gynaecological cancers in the Chinese populationKhoo, Ui-soon., 邱瑋璇 January 2002 (has links)
published_or_final_version / abstract / toc / Medicine / Master / Doctor of Medicine
|
59 |
Screening of recurrent BRCA gene mutations in Chinese breast and ovarian cancer馮敬業, Fung, King-yip. January 2000 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
|
60 |
Involvement of chromosome 20q in the immortalization of human ovarian surface epithelial cellsChung, Chin-man., 鍾展雯. January 2004 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
|
Page generated in 0.0307 seconds