• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protection of vascular nitric oxide by superoxide dismutase mimetics

MacKenzie, Andrew January 1998 (has links)
No description available.
2

Factors affecting copper metallothionein turnover

Cunningham, Heather January 1990 (has links)
Investigations concerning metallothionein (MT) have covered 4 main areas. Initial studies were carried out to develop an immunocytochemical technique for the detection of MT. An indirect peroxidase technique was used to localise MT within the livers and kidneys of rats injected with CuSO4. An increase in immunocytochemical staining was observed following Cu injection which was consistent with the increase in MT-I concentrations as detected by RIA. To establish whether degradation of MT in vitro is influenced by prior exposure of protein to oxygen free radicals. (Cu,Zn)-MT with Cu:Zn ratio 1:1, purified from pig liver following injection with diethylamine copper oxyquinoline sulphonate (Cujec), was found to be extensively degraded after incubation with a free radical generating system (xanthine/xanthine oxidase) and subsequently with trypsin. However proteins with Cu:Zn ratios of 2:1 or 5:1 were not greatly affected. This indicates that an oxidative step may be involved in the degradation pathway and/or aggregation of MT but the magnitude of the effect is ultimately determined by the ratio of metals present within MT. To establish whether the turnover rate of hepatic CuMT is increased in vivo in animals subjected to oxidant stress. Iron overload was used to initiate oxidant stress in rats prior to injection of Cu using a mixture of Cujec and CuSO4. It could not be concluded, however, if in vivo degradation of CuMT was influenced by the application of iron-induced oxidant stress. Subcellular localisation of MT by fractionation of liver and kidney homogenates using preformed Percoll gradients did, however, demonstrate that MT was not associated with the lysosomal fraction but within the nuclear fraction in correlation with previous studies. To identify specific chelators for selective removal of Cu from CuMT in vitro and to establish the effect of administration of such chelators on the turnover of CuMT in vivo. Ammonium terathiomolybdate [(NH4)2MoS4] was incubated with (Cu,Zn)-MT and Cd, resulting in the complete removal of Cu from protein and replacement with Cd. The effect of this chelating action for Cu was then studied in vivo by administration of (NH4)2MoS4 to rats following injection of Cu using a mixture of Cujec and CuSO4. The turnover and degradation of induced CuMT, however, could not be said to be increased by the addition of the Cu chelator, (NH4)2MoS4, conclusively.
3

Monosialoganglioside-Containing Nanoliposomes Restore Endothelial Function Impaired by AL Amyloidosis Light Chain Proteins.

Franco, Daniel A, Truran, Seth, Weissig, Volkmar, Guzman-Villanueva, Diana, Karamanova, Nina, Senapati, Subhadip, Burciu, Camelia, Ramirez-Alvarado, Marina, Blancas-Mejia, Luis M, Lindsay, Stuart, Hari, Parameswaran, Migrino, Raymond Q 13 June 2016 (has links)
Light chain amyloidosis (AL) is associated with high mortality, especially in patients with advanced cardiovascular involvement. It is caused by toxicity of misfolded light chain proteins (LC) in vascular, cardiac, and other tissues. There is no treatment to reverse LC tissue toxicity. We tested the hypothesis that nanoliposomes composed of monosialoganglioside, phosphatidylcholine, and cholesterol (GM1 ganglioside-containing nanoliposomes [NLGM1]) can protect against LC-induced human microvascular dysfunction and assess mechanisms behind the protective effect.
4

The role of endothelial function and oxidant stress in a model of insulin resistance

Andrews, Tara Jane January 2003 (has links)
Type 2 diabetes mellitus affects over 100 million people worldwide. It is characterized by various metabolic abnormalities such as insulin resistance, aberrant insulin secretion, hyperglycaemia and a cluster of cardiovascular risk factors, including increased oxidative stress. It is associated with microvascular complications and increased potential of macrovascular disease. The aim of the studies described in this thesis was to test the hypothesis that oxidant stress contributes to an altered vascular function and impaired insulin regulation in a pre-diabetic animal model- the obese Zucker rats. The first objective was to develop new methods to measure endothelial function in animal disease models. Firstly, without autonomic control - the in situ perfused hindquarters, and secondly, with autonomic control - the in vivo Doppler ear blood flow. The obese Zucker rat was shown to have increased oxidative stress, as measured by plasma 8-epi-PGF2a,. It also had high insulin and glucose levels and impaired glucose disposal. Obese rats also had increased agonist-induced nitric oxide-dependent endothelial responses; these were further enhanced by insulin in a macrovascular preparation, but were impaired by insulin in a resistance vessel bed. Following dietary treatment with the antioxidants, the obese plasma insulin/glucose ratio was improved. However, vitamin E blunted the enhanced endothelial-dependent vasodilator responses, and decreased plasma levels of 8-epi-PGF2a. In contrast, pro-oxidant treatment with hydroquinone and buthionine-sulphoximine impaired the plasma insulin/glucose ratio, abolished endothelial hyperactivity but increased plasma 8-epi-PGF2a levels. Interestingly, fructose protected against pro-oxidant-induced increases in plasma 8-epi-PGF2a levels and further increases in glucose-induced plasma insulin. In summary the redox status in obese Zucker rats was modified with antioxidant and prooxidant treatment. This resulted in compensatory changes in glucose disposal and endothelial function. Impaired endothelial function may initiate "damage" especially in those individuals susceptible to syndrome X, leading to insulin insensitivity and vascular dysfunction in type 2 diabetes.
5

Role of inflammation and endothelial dysfunction of coronary arterioles in type 2 diabetes

Yang, Ji Yeon 15 May 2009 (has links)
We hypothesized that the interaction between tumor necrosis factor alpha(TNF)/nuclear factor-kappaB (NFkB) via activation of IKK may amplify one anotherresulting in the evolution of vascular disease and insulin resistance associated withdiabetes. The interaction between TNFa and monocyte chemoattractant protein-1 (MCP-1) may contribute to the evolution of vascular inflammation and endothelial dysfunctionin coronary arterioles in type 2 diabetes. To test this hypothesis, endothelium-dependent(ACh) and –independent (SNP) vasodilation of isolated, pressurized coronary arterioles(40-100 μm) from mLeprdb (heterozygote, normal), Leprdb (homozygote, diabetic) andLeprdb mice null for TNF (dbTNF-/dbTNF-) were examined. Although dilation of vesselsto SNP was not different between Leprdb and mLeprdb mice, dilation to ACh was reducedin Leprdb mice. The NFkB antagonist, MG-132, IKK inhibitor, sodium salicylate(NaSal), or Anti-MCP-1 partially restored endothelium-dependent coronary arteriolardilation in Leprdb mice. Protein expression of IKK and IKK were higher in Leprdb thanin mLeprdb mice. The expression of IKK, but not the expression of IKK was increasedin dbTNF-/dbTNF- mice. Leprdb mice showed increased insulin resistance, but NaSal improved insulin sensitivity. Protein expression of TNFa, NFkB, phosphorylation ofIKK and JNK were greater in Leprdb mice, but NaSal attenuated protein expression ofthem in Leprdb mice. The ratio of phosphorylated IRS-1 at Ser307 (pIRS-1)/IRS-1protein expression was elevated in Leprdb mice; both NaSal and JNK inhibitor SP600125reduced pIRS-1/IRS-1 in Leprdb mice. MG-132 or neutralization of TNF reducedsuperoxide production in Leprdb mice. Anti-MCP-1 attenuated superoxide productionand protein expression of nitrotyrosine (N-Tyr), which is an indicator of peroxynitriteproduction, in isolated coronary arterioles of Leprdb mice. Immunostaining resultsshowed that expression of MCP-1 and vascular cellular adhesion molecule-1 (VCAM) isco-localized with endothelial cells and macrophages. Anti-TNFa or anti-MCP-1markedly reduced macrophage infiltration and the number of MCP-1 positive cells.Neutralization of TNFa or anti-MCP-1 reduced the expression of adhesion molecules. Inconclusion, our results indicate that the interaction between NFkB and TNFa signalinginduces activation of IKKb. In addition, TNFa and TNFa-related signaling, includingthe expression of MCP-1 and adhesion molecules, further exacerbates oxidative stressleading to endothelial dysfunction in type 2 diabetes.
6

Role of inflammation and endothelial dysfunction of coronary arterioles in type 2 diabetes

Yang, Ji Yeon 15 May 2009 (has links)
We hypothesized that the interaction between tumor necrosis factor alpha(TNF)/nuclear factor-kappaB (NFkB) via activation of IKK may amplify one anotherresulting in the evolution of vascular disease and insulin resistance associated withdiabetes. The interaction between TNFa and monocyte chemoattractant protein-1 (MCP-1) may contribute to the evolution of vascular inflammation and endothelial dysfunctionin coronary arterioles in type 2 diabetes. To test this hypothesis, endothelium-dependent(ACh) and –independent (SNP) vasodilation of isolated, pressurized coronary arterioles(40-100 μm) from mLeprdb (heterozygote, normal), Leprdb (homozygote, diabetic) andLeprdb mice null for TNF (dbTNF-/dbTNF-) were examined. Although dilation of vesselsto SNP was not different between Leprdb and mLeprdb mice, dilation to ACh was reducedin Leprdb mice. The NFkB antagonist, MG-132, IKK inhibitor, sodium salicylate(NaSal), or Anti-MCP-1 partially restored endothelium-dependent coronary arteriolardilation in Leprdb mice. Protein expression of IKK and IKK were higher in Leprdb thanin mLeprdb mice. The expression of IKK, but not the expression of IKK was increasedin dbTNF-/dbTNF- mice. Leprdb mice showed increased insulin resistance, but NaSal improved insulin sensitivity. Protein expression of TNFa, NFkB, phosphorylation ofIKK and JNK were greater in Leprdb mice, but NaSal attenuated protein expression ofthem in Leprdb mice. The ratio of phosphorylated IRS-1 at Ser307 (pIRS-1)/IRS-1protein expression was elevated in Leprdb mice; both NaSal and JNK inhibitor SP600125reduced pIRS-1/IRS-1 in Leprdb mice. MG-132 or neutralization of TNF reducedsuperoxide production in Leprdb mice. Anti-MCP-1 attenuated superoxide productionand protein expression of nitrotyrosine (N-Tyr), which is an indicator of peroxynitriteproduction, in isolated coronary arterioles of Leprdb mice. Immunostaining resultsshowed that expression of MCP-1 and vascular cellular adhesion molecule-1 (VCAM) isco-localized with endothelial cells and macrophages. Anti-TNFa or anti-MCP-1markedly reduced macrophage infiltration and the number of MCP-1 positive cells.Neutralization of TNFa or anti-MCP-1 reduced the expression of adhesion molecules. Inconclusion, our results indicate that the interaction between NFkB and TNFa signalinginduces activation of IKKb. In addition, TNFa and TNFa-related signaling, includingthe expression of MCP-1 and adhesion molecules, further exacerbates oxidative stressleading to endothelial dysfunction in type 2 diabetes.
7

A systems pharmacology approach to discovery of drugs to ameliorate oxidant stress in human endothelial cells

Bynum, James Andrew, Jr. 08 September 2015 (has links)
Ischemia is characterized by reduced blood flow to an area of the body which can then cause cellular injury through the generation of reactive oxygen species (ROS), activation of inflammation, and induction of apoptosis. Although rapid reestablishment of flow is required to prevent organ death, the reperfusion phase of this injury can cause its own deleterious effects often exacerbating the initial insult. The combined action of the two injuries is termed ischemia/reperfusion (I/R) injury. Oxidative stress that results from ischemia/reperfusion injury is a common pathological condition that accompanies many human diseases including stroke, heart attack and traumatic injury. In addition, neurodegenerative diseases including Parkinson’s, Alzheimer’s, and Huntington’s disease appear to involve oxidative stress. Although actively investigated by the medical and pharmaceutical industry; limited progress has been made to ameliorate I/R injury and to date there is no drug approved for treatment for I/R injury. Therapeutic approaches to treat I/R injury have included the administration of compounds to scavenge ROS or induce protective pathways or genetic responses. It was previously reported that caffeic acid phenethyl ester (CAPE), a plant-derived polyphenol, displayed cytoprotective effects against menadione (MD)-induced oxidative stress in human umbilical vein endothelial cells (HUVEC), and the induction of heme oxygenase-1 (HMOX1), a phase II enzyme, played an important role for CAPE cytoprotection. In an effort to improve this cytoprotection, other phase II enzyme inducers were investigated and, 2-cyano-3,12 dioxooleana-1,9 dien-28-imidazolide (CDDO-Im) and 2-cyano-3,12-dioxooleana-1,9-dien-28-oyl methyl ester (CDDO-Me), were found to be potent inducers with a rapid onset of action. CDDO-Im and CDDO-Me, synthetic olenane triterpenoids, developed as anticancer agents were compared to CAPE revealing that CDDO-Im was a more potent inducer of Phase II enzymes including HMOX1 and provided better cytoprotection than CAPE. Gene expression profiling showed that CDDO-Im was more potent inducer of protective genes like HMOX1 than CAPE and additionally induced heat shock proteins. To better understand the mechanism of action of CDDO-IM, a gene expression time-course was undertaken to identify early initiators of the transcriptional response preceding cytoprotection. Application of systems pharmacology identified molecular networks of cell mediating processes.
8

Identification des mécanismes physiopathologiques de la dystrophie facioscapulohumérale : rôle de la mitochondrie et du stress oxydant / Identification of pathophysiological mecanisms of facioscapulohumeral muscular dystrophy : involvement of mitochondria and oxidant stress

Turki, Ahmed 06 December 2012 (has links)
La dystrophie facioscapulohumérale (FSHD) est une dystrophie musculaire autosomique dominante, dégénérative et progressive. Les traitements élaborés jusqu'à présent n'ont pas réussi à améliorer le quotidien des patients FSHD. Plusieurs études se sont focalisées sur les mécanismes moléculaires de cette pathologie, néanmoins plusieurs d'entre elles sont contradictoires. La vision actuelle de la FSHD est celle d'une pathologie due à un mécanisme épigénétique complexe et les mécanismes moléculaires responsables de cette pathologie sont encore mal connus. Plusieurs analyses comparatives des profils d'expression des ARNm et des protéines de muscles de patients atteints de FSHD et de contrôles ont permis de montrer que plusieurs gènes impliqués dans le stress oxydant sont dérégulés de façon spécifique dans les muscles FSHD. Nos travaux ont permis de montrer dans la FSHD, aussi bien au niveau systémique, musculaire et cellulaire (cultures primaires musculaires) une augmentation des dommages oxydatifs qui se traduisent par une augmentation des peroxydes lipidiques et protéines oxydées, associés à une altération des défenses antioxydantes. Ce stress oxydant dans les biopsies musculaires et cultures primaires musculaires est associé à un dysfonctionnement mitochondrial. Des analyses plus fines sur l'action des espèces réactives de l'oxygène et leurs sources pourraient contribuer à une meilleure compréhension des bases physiopathologiques de la FSHD et permettre la sélection de thérapeutiques adaptées aux anomalies des patients FSHD. / Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal inherited muscular dystrophy. Actually no treatment led to improve the quality of life. Many studies have been focused on the molecular mechanisms of this disease, several of them were contradictory. The present view of the FSHD seems to be due to a complex epigenetic mechanism. Actually, no gene has been identified. Several comparative studies permit the identification of many genes involved in oxidative stress, deregulated in FSHD myoblasts and biopsies in comparison to healthy ones. Analysis of oxidative stress markers show that patients with FSHD present increased oxidative damage in blood as well as in biopsy muscle and muscular primary cell culture associated with altered antioxidant enzyme defenses. Oxidative stress is also associated with mitochondrial dysfunction. Complementary studies focusing in pathway of reactive oxygen species would contribute to a better understanding of pathophysiological bases of FSHD in order to establish a very helpful therapeutics for FSHD patients.
9

Influence des polyphénols du raisin rouge sur le stress oxydant chez l'homme sain à risque métabolique : relation avec les mécanismes de l’insulinorésistance / Influence of red grape polyphenols on oxidative stress in healthy subjects at high metabolic risk : relatioship with the mechanisms of insulin resistance

Hokayem, Marie 10 July 2013 (has links)
L'insulinorésistance (IR), touchant 80% des sujets obèses, forme, aux côtés du déficit insulinosécrétoire, l'un des deux mécanismes physiopathologiques clés du diabète de type 2. Sa prévention nécessite de bien en comprendre les mécanismes inducteurs. Les facteurs nutritionnels tels que la surconsommation d'aliments hypercaloriques pauvres en micronutriments antioxydants jouent un rôle majeur. Ils conduisent à une production de radicaux libres excédant les défenses antioxydantes et donc à un stress oxydant qui a été proposé comme étant un trait d'union entre la surconsommation alimentaire et l'IR. Dans ce contexte, mon travail de thèse a visé à évaluer si des polyphénols (PP) de raisin rouge, composés phytochimiques antioxydants, étaient capables de moduler favorablement la cascade d'évènements conduisant de la suralimentation au stress oxydant et à l'IR. Ainsi des sujets sains à risque de développer une IR ont été supplémentés durant 9 semaines avec un extrait de raisin riche en PP. Pour sensibiliser les effets potentiels des PP, une surcharge en fructose a été donnée au cours des 6 derniers jours du protocole. Chez nos volontaires nous avons étudié : le statut redox, l'inflammation, la production d'adipokines, l'activité mitochondriale et l'insulinosensibilité par clamp euglycémique à deux paliers. Les résultats obtenus démontrent que les PP de raisins préviennent l'IR hépatique et musculaire en inhibant le stress oxydant et la dysfonction mitochondriale induite par une surcharge en fructose. En conclusion, ces travaux suggèrent l'intérêt thérapeutique d'une supplémentation en antioxydants naturels à doses nutritionnelles de PP de raisins, pour la prévention de l'IR. / Insulin resistance (IR), found in 80% of obesity cases, constitutes with insulin secretory deficiency one of the two key physiopathological mechanisms of type 2 diabetes. In order to better prevent it, in depth knowledge of its inducing mechanisms is required. Nutritional factors such as overconsumption of hypercaloric foods poor in antioxidant micronutrients play a pivotal role. The latter activate an overproduction of free radicals exceeding antioxidant defenses leading to oxidant stress, which is considered to be a unifying mechanism for nutrient overconsumption and IR. In this context, my thesis work aimed to determine if red grape polyphenols (PP), antioxidant phytochemicals, were capable to favorably modulate the cascade of events leading from overconsumption to oxidant stress to IR. Thus healthy subjects at risk of developing IR were supplemented for 9 weeks with an enriched PP grape extract. In order to study PP potential effects in a environment under metabolic stress, during the last 6 days of the protocol volunteers received a fructose overload. Throughout investigations the following parameters were studied: inflammation, adipokine production, mitochondrial activity and insulin sensitivity evaluated by a 2 step glucose clamp.The results obtained demonstrate how red grape PP prevent hepatic and muscular IR by inhibiting oxidant stress and mitochondrial dysfunction induced by fructose overload.In conclusion, this study illustrates the therapeutic efficiency of natural antioxidant supplementation in the form of nutritional doses of grape PP in the prevention of IR.
10

Rôle de la dysfonction mitochondriale dans deux maladies neurodégénératives, la Maladie de Huntington et la Maladie de Parkinson / The role of the mitochondrial dysfunction in two neurodegenerative diseases, Huntington's disease and Parkinson's disease

Damiano, Maria 06 May 2014 (has links)
Un dysfonctionnement mitochondrial est impliqué dans plusieurs maladies neurodégénératives, corrélé avec une augmentation des niveaux de stress oxydant. Les anomalies mitochondriales observées dans les tissus des patients, les modèles animaux et cellulaires des maladies de Huntington et de Parkinson, suggèrent l'implication de la mitochondrie dans leur pathogénie.Les deux projets discutés dans ce manuscrit se focalisent sur le rôle des aspects particuliers de la physiologie mitochondriale au cours des deux maladies. / Mitochondrial dysfunction has been implicated in several neurodegenerative diseases and is correlated with augmented levels of intracellular oxydant stress. The mitochondrial defects observed in tissues from patients, as well as in animal and cellular models of Huntington’s and Parkinson’s diseases, suggest the implication of mitochondria in the pathogenesis of these diseases. The two projects discussed in this manuscript focus on the role of particular aspects of mitochondrial physiology in these diseases. By the first project we show the role of defective mitochondrial respiratory chain compex II in several rodent models of Huntington’s disease. By using a lentivirus-based gene transfert strategy we highlight the neuroprotective potential of the striatal overexpression of the subunits of complex II. The second project focus on Parkin and PINK1, two proteins implicated in the autosomal recessive, hereditary forms of Parkinson’s disease and in mitochondrial quality control mechanisms, such as mitophagy. In a cellular model we show that the two proteins facilitate Drp1-dependent mitochondrial fission. We show that Parkin may facilitate the signaling pathways controlling the activity of the pro-fission protein Drp1. This effect is probably indirect and mostly PINK1-independent. On the contrary, in mitochondrial depolarization conditions, by FRET (Förster Resonance Energy Transfer) a direct spatial coordination of Parkin, PINK1 and Drp1 is observed, which seems to be determinant for the efficiency of mitophagy. My projects shed new light on pathogenic mechanisms and open new perspectives in the research on these diseases.

Page generated in 0.1139 seconds