Spelling suggestions: "subject:"boxidation experiments"" "subject:"deoxidation experiments""
1 |
A kinetic study of the chromium (VI) - arsenic (III) reaction in pyridine-pyridinium buffer solutions containing oxalateO'Neal, Stephen Vernon January 1985 (has links)
The oxidation of arsenic (III) by chromium (VI) has been studied in pyridine - pyridinium buffers with and without added oxalate ion.
The rate law at pH 4.6 for the reactions without oxalate is best described as
- d[Cr(VI)]/dt = (0.535 [As(III)]² [Cr(VI)])/(1+187 [As(III)])
This is in accord with the general mechanism for chromium (VI) oxidation proposed by Beattie and Haight. The behavior in pyridine - pyridinium buffers is different from that observed in acetic acid acetate buffers of the same pH.
In the presence of oxalate, the observed rate law is
- d[Cr(VI)]/dt = (310 [As(III)] [C₂O₄²⁻] [Cr(VI)])/(1+31.0 [As(III)])
In each case the reaction stoichiometry was found to be 3As(III) + 2Cr(VI) = 3As(V) + 2Cr(III). The role of oxalate was found to be catalytic although it was incorporated in the final Cr(III) product.
Complex kinetic behavior was observed as a function of pH, [AsIII], and buffer composition. / M.S.
|
2 |
Extraction de bore par oxydation du silicium liquide pour applications photovoltaïques / Boron extraction from liquid silicon by oxidation for photovoltaic applicationsVadon, Mathieu 23 October 2017 (has links)
L'extraction du bore du silicium liquide est une étape d'une chaîne de procédés de purification de silicium de qualité suffisante pour les applications photovoltaïques. Cette thèse étudie en priorité le procédé dit "gaz froid" qui consiste en l'injection d'un mélange de gaz Ar-H2-H2O sur du silicium liquide chauffé électromagnétiquement. Une deuxième méthode similaire ("procédé plasma") où on injecte un plasma thermique issu d'un mélange Ar-H2-O2 a également été étudiée. Un modèle est nécessaire afin d'optimiser le procédé pour économiser de l'énergie.Les trois objectifs du modèle sont la prédiction du flux de silicium issu de la surface (vitesse d'oxydation), du flux de bore issu de la surface (pour avoir la vitesse de purification), et du seuil de passivation. Le seuil de passivation est la limite de concentration d'oxydant au-delà de laquelleil apparait une couche de silice passivante qui empêche la purification. Afin de minimiser la consommation d'énergie en accélérant le procédé, on cherche à injecter une concentration d'oxydant juste en dessous du seuil de passivation.De précédentes études ont montré que le facteur limitant pour les flux de bore et de silicium est le transport d'oxydant dans la phase gaz. Ainsi, nous avons fait un modèle monodimensionnel réactif-diffusif à l'équilibre thermodynamique de la couche limite gazeuse. Selon ce modèle, l'effet de la formation d'aérosols de silice est de diviser par deux le flux d'oxydant vers la surface, ce qui sert aux simulations CFD. Cet effet des aérosols de silice sur les flux d'oxydant peut aussi se retrouver si on enlève l'hypothèse d'équilibre thermodynamique des aérosols de silice avec la phase gaz, ce qui est confirmé par des simulations CFD et des expériences.Pour ce qui concerne l'estimation de la vitesse de purification, les données les plus réalistes concernant l'enthalpie de formation de HBO(g) et le coefficient d'activité du bore dans le silicium liquide ont été sélectionnées. Nous obtenons une bonne prédiction de la vitesse de purification à différentes températures et concentrations d'oxydant, y compris pour le cas plasma que nous avons étudié, en utilisant ces données thermodynamiques et en supposant que les produits de réaction de surface SiO(g) et HBO(g) diffusent de manière similaire. Ces coefficients de transfert identiques pour HBO(g) et SiO(g) peuvent s'expliquer par une précipitation simultanée et commune de HBO(g) et SiO(g), selon des mécanismes de germination et croissance restant à déterminer.Un dispositif expérimental de lévitation électromagnétique de silicium sous un jet oxydant a été monté. La mesure et le contrôle de température d'une bille de silicium ont été mis en oeuvre ce qui permettra la mesure sans contaminations de données thermodynamiques concernant les impuretés .Le seuil de passivation mesuré sur quelques expériences disponibles peut être prédit par notre modèle d'oxydation (associé au facteur deux représentant les aérosols de silice), si on l'associe à un critère proposé dans la littérature, qui couple la fraction du flux d'oxydant arrivant à la surface à une loi d'équilibre entre SiO(g), Si(l) et SiO2(s/l). Nous montrons dans cette thèse que la couche passivante n'est compatible avec des aérosols de silice que si ces aérosols ne sont pas en équilibre avec la phase gaz. La cinétique de formation des aérosols de silice doit donc être étudiée plus en détails. / Boron extraction from liquid silicon is a step within a new chain of processes aimed to purify silicon that meets purity requirements specific to photovoltaic applications. This thesis focuses mostly on cold gas processes that involve the injection of a mixture of Ar-H2-H2O gases onto electromagnetically stirred liquid silicon. A second similar method ("plasma processes") that involves the injection of thermal plasma made from an Ar-H2-H2O mixture has also been studied. A model is needed to minimize energy consumption by optimizing the process.We want to be able to predict the flow of silicon from the reactive surface (oxidation speed), the flow of boron from the surface (to have the purification speed) and the passivation threshold. For a given setting, the passivation threshold is the limit oxydant partial pressure at injection beyond which a passivating silica layer appears on the surface of the liquid silicon, which interrupts the purification. In order to minimize the energy consumption, and for that matter , in order to speed up the process, we want to inject oxydant in a quantity just below the passivation threshold.Previous studies have shown that the limiting factor for the oxidation and purification speed is the transport of oxidant in the gas phase. That's why we have made a 1D reactive-diffusive model at thermodynamical equilibrium of the gaseous boundary layer. According to this model the effect of the formation of silica aerosols is to divide by two the flow of oxydant towards the surface, which is useful for the simplification of CFD simulations. This effect of the formation of silica aerosols on oxidant flows can also be found without the hypothesis of thermodynamical equilibrium of silica aerosols with the gas phase, as confirmed by simulations and experiments.Regarding the estimation of the purification speed, we have selected the most realistic values of the enthalpy of formation of HBO(g) and of the activity coefficient of boron in liquid silicon.We could get good estimates of the purification speed at different temperatures and levels of oxidant concentrations at injection, by using the selected thermodynamical values and by supposing that the surface reaction products HBO(g) and SiO(g) diffuse similarly. A reason for this similar diffusion of SiO(g) and HBO(g) might be a common and simultaneous precipitation , due to specific dynamics of nucleation and growth that need to be investigated further. Those results for cold gas processed could also be obtained for a plasma experiment.However for the plasma experiment, silica aerosols can be formed only in a very thin layer near the surface and this result needs confirmation from other experiments.Temperature measurement and control for electromagnetically levitating liquid silicon under a flow of oxidant were achieved. With more time, quantitative results could be achieved to measure thermodynamical data on impurities without contaminations.Regarding the prediction of the passivation threshold, we justified a thermodynamical equilibrium at surface of SiO(g) with Si(l) and SiO2(s/l) at passivation threshold with the spreading of silica particles over the liquid silicon surface with the stirring. We show that the passivation layer is compatible with silica aerosols only if those aerosols are not in equilibrium with the gas phase. Therefore the kinetics of formation of silica aerosols should be studied further. A previous empirical formula on the prediction of the passivation threshold for experiments where H2O is the oxidant has been confirmed using our CFD model. A passivation experiment has shown the absence of impact of silica aerosols on oxidant transport when the oxidant is O2.
|
Page generated in 0.1366 seconds