• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2036
  • 1028
  • 327
  • 96
  • 95
  • 82
  • 41
  • 33
  • 22
  • 21
  • 16
  • 12
  • 11
  • 10
  • 9
  • Tagged with
  • 4272
  • 3419
  • 1732
  • 1544
  • 397
  • 329
  • 314
  • 290
  • 266
  • 256
  • 245
  • 243
  • 235
  • 230
  • 228
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Spontaneous mutagenesis in stressed Escherichia coli

Timms, Andrew Robert January 1998 (has links)
No description available.
52

Molecular mutation spectra of 6-thioguanine resistant human T-lymphocyte and UV-irradiated lymphoblastoid mutants

Wolfreys, Alison Mandy January 1998 (has links)
No description available.
53

Superoxide anion in osteoclast and osteoblast function

Berger, Christine Elizabeth Marie January 1998 (has links)
No description available.
54

Defects of the mitochondrial respiratory chain : biochemical studies and mathematical modelling

Lowerson, Shelagh Anne January 1999 (has links)
No description available.
55

Glucose metabolism in hepatocytes exposed to free radical stress

Pariagh, Sandra January 2001 (has links)
No description available.
56

Mitochondrial uptake of anthocyanidins and protection from oxidative stress

2012 August 1900 (has links)
The anthocyanins show efficient antioxidant properties and free radical scavenging properties which result in various health-promoting benefits. This research investigated the ability of anthocyanidins to distribute into mitochondria and protect mitochondria from oxidative stress. In an in vitro study, the uptake of pure cyanidin and quercetin, and their 3-glucosylated forms into isolated rat liver mitochondria was tested, along with their effects on mitochondrial oxidative stress parameters. The absorption of cyanidin was significantly higher (67% uptake of 125 µM) than the other three flavonoids. Measurements indicated that the cyanidin was taken up into or tightly bound by mitochondria. Also, results suggested that cyanidin uptake was partially dependent on membrane potential. When incubated together (internally and externally) with mitochondria all tested flavonoids decreased reactive oxygen species (ROS) generation during mitochondrial respiration, and inhibited lipid peroxidation to different extents. Importantly, pre-loaded CY showed much stronger effects against oxidative stress in two analyses than other flavonoids. Due to its greater uptake by mitochondria, cyanidin may provide greater protection in vivo. In an in vivo study, cyanidin, quercetin and their 3-glucosides were administered into rat tail vein to give a dose of 7.6 µmol/Kg body weight. Cyanidin and its glucoside had greater affinity to liver and kidney than did quercetin and its glucoside; particularly, all test tissues contained a significantly higher amount of cyanidin than other test flavonoids. Also, cyanidin accumulated more in liver mitochondria than other flavonoids, and consistent with in vitro results was present in mitochondria to a much greater extent than cyanidin glucoside. However, delivery of the flavonoids at this dose did not significantly affect the liver mitochondria susceptibility to lipid peroxidation or the level of endogenous tissue oxidative damage. Altogether the results show that cyanidin can rapidly and efficiently accumulate in mitochondria, wherein it exhibits strong bio-antioxidant activity against oxidative stress and may help protect mitochondrial function and integrity. Also, the anthocyanidin and its 3-glucoside have greater ability than flavonols to accumulate in organs; especially cyanidin presented in liver mitochondria to a much greater extent. Cyanidin could be a potent natural antioxidant compound that is effective in mitochondria-protective therapies.
57

Biomarkers of oxidative stress in models of schizophrenia

Young, Julie January 2007 (has links)
Background: Increasing evidence indicates that oxidative injury exists in schizophrenia. Although it may not be the main cause, oxidative damage has been suggested to contribute to the pathophysiology and may account for deteriorating course and poor outcome in schizophrenia. There is increasing interest in the neuroprotective efficacy of antioxidants in modulating such processes with at least one polyphenolic being tested as a prophylactic in Alzheimer's disease. Beneficial effects of adjunctive ω-3 (n-3 series) polyunsaturated fatty acids with combined intakes of vitamin C and E on both the positive and negative symptoms of schizophrenia have been reported. Robust in vitro systems are desirable, enabling a mechanistic investigation of the molecular mechanisms underpinning such effects and identification of further potentially efficacious nutraceuticals. Materials and Method: Comparative studies employing a lymphoblastoid cell line of schizophrenic origin, a neuroblastoma IMR-32 cell line and the lymphoma U937 cell line was undertaken. The cytoprotective effects of phenolic antioxidants and essential fatty acids in affording protection to cellular DNA, protein and lipids from an oxidative challenge were assessed in the three cell lines. In addition, two human studies were undertaken. The first study utilised the non-invasive technique of breath hydrocarbon analysis and the lipid peroxidation products in a population of schizophrenic patients were compared to a population of apparently healthy aged-matched control subjects, while the second study investigated possible differences in biomarkers of DNA, lipid and protein oxidation in schizophrenic and control subjects. Plasma vitamin C levels were also compared in both groups. Results and Conclusion: Cell Culture Studies: Pre-treatment of peripheral and neuronal cells with antioxidant or ω-3 fatty acids followed by an oxidative challenge significantly reduced the levels of DNA damage. Treatment with H₂O₂ alone and following pre-treatment with EPA or DHA had no effect on the levels of protein carbonyls in U937 cells, however, DHA supplementation did appear to reduce endogenous and H2O2-induced protein carbonylation. Marked differences in the uptake of fatty acids by the cell types were found and the IMR-32 cell line was most susceptible to the oxidant challenge. Hydroxytyrosol gave significant cytoprotection in all three cell lines and this possible neuroprotective efficacy warrants further investigation, both in vitro and in vivo. Treatment of the three cell lines with a high concentration of H2O2 for 30min or 4 hours did not induce a significant increase in MDA. U937 cells were supplemented for 24 hours with fatty acids followed by a 4 hour oxidative stress. Both EPA and DHA treatment appeared to reduce LOOH levels in the U937 cells but not significantly. Cytoplasmic PLA2 activity in the three human cell lines was examined and the basal level of cPLA2 activity was found to be comparable in the lymphoblastoid and IMR-32 cells but significantly lower than that measured in the U937 cells. Supplementation of the U937 cell line with EPA caused a significant decrease (p<0.05) in cPLA2 activity relative to the vehicle treated control but neither EPA nor DHA supplementation appeared to have any significant effect on either total PLA2 or cPLA2 activity in IMR-32 or lymphoblastoid cell lines. Abstract v Human Studies: No significant difference was found between the levels of ethane and pentane in the breath from the schizophrenic patients and control samples. In addition, no significant difference in the levels of plasma MDA between the two groups was detected. Ethane levels and MDA levels were higher in the male schizophrenic samples than in the female schizophrenic samples but the results were not statistically significant. The pentane levels were higher in the female schizophrenic samples when compared to the male schizophrenia samples but again, these were not significantly greater. Finally, results of study 2 revealed that cellular DNA damage and plasma protein carbonyl levels were increased in the schizophrenic group compared to control subjects but not significantly. However, DNA damage in lymphocytes from the male schizophrenic group was significantly higher than the female group. Biomarkers of lipid peroxidation and plasma vitamin C levels also revealed no significant difference between the two groups under investigation, although a significant elevation in plasma vitamin C was observed in the female control group when compared to the male groups. Treatment of cells with EPA, DHA and hydroxytyrosol to reduce levels of oxidative damage warrants further investigation. Ultimately, it is important to investigate a range of biomarkers to determine whether the measurement of oxidative damage to lipids, proteins and DNA has clinical significance. This will enable better understanding of the disease of interest and allow these biomarkers to become potentially useful clinical tools.
58

Measurement of nitric oxide metabolites and protein nitration in healthy and inflammatory human tissues and bio-fluids

Knight, Annie Rose January 2016 (has links)
The central thesis of this project is that damage caused by reactive nitrogen species, e.g. 3-nitrotyrosine (Tyr-NO2), constitutes a marker of disease progression/severity. A new sensitive electrochemiluminescence ELISA was optimised and validated for Tyr-NO2 measurement, giving a lower limit of quantification of 0.04 nM BSA-NO2, intra- and inter-assay CVs of 6.5% and 11.3%, an average recovery of 106 ± 3% and average linearity 0.998 ± 0.001. Nitrative stress, carbonyl stress and C-reactive protein (CRP) concentrations were measured before and after major elective surgery. CRP measurements confirmed the induction of an inflammatory response. Median serum Tyr-NO2 levels increased post-surgery to a median (inter-quartile range) value of 0.97 (0 – 1.7) fmol nitrated BSA (BSA-NO2) equivalents/mg protein compared with a pre-surgery level of 0.59 (0 – 1.3) fmol BSA-NO2 equivalents/mg protein (p<0.05). Oxidative damage was confirmed by serum protein carbonyl levels (p<0.05). In a second pre-/post- surgery study, patients who developed sepsis postoperatively had significantly higher serum Tyr-NO2 levels one day prior to diagnosis (median (IQR) 4.5 (1.65 – 8.21) fmol BSA-NO2 equivalents/mg protein) compared to patients without sepsis (1.2 (0.74 – 5.97) fmol BSA-NO2 equivalents/mg protein; p<0.05). Tyr-NO2 levels have not previously been measured before clinical diagnosis. However, Tyr-NO2 did not improve upon CRP as a diagnostic marker (area under the curve: Tyr-NO2 0.69 versus CRP 0.88). Nitrate (NO3¯) supplementation in healthy smokers was also studied. Plasma Tyr-NO2 levels were unaltered by supplementation or smoking status. Salivary nitration was unaffected by smoking and decreased with NO3¯ supplementation: the median (IQR) pre-supplementation was 0.67 (0.31-1.14) and post-supplementation was 0.43 (0.12-0.61) pmol BSA-NO2 equivalents/mg protein. Ozone-based chemiluminescence was utilised for nitrite (NO2¯) and NO3¯ measurement as indicators of ˙NO production. Plasma and salivary NO2¯ and NO3¯ concentrations increased significantly with NO3¯ supplementation (p<0.05). In contrast to published studies, brain frontal lobe Tyr-NO2 levels were not higher in dementia: the median (IQR) levels in dementia were 0.29 (0.19-0.57) and in non-dementia controls were 0.3 (0.22-0.55) pmol BSA-NO2 equivalents/mg protein. However, the median brain tissue NO2¯ concentration was significantly higher in the Alzheimer’s disease group (p<0.05). Western blotting revealed that nitration was predominantly in a few select proteins, with TOF-MS/MS analysis suggesting haemoglobin is one of these proteins. Measurement of nitrative stress using ozone-based chemiluminescence and an electrochemiluminescence-based-ELISA overcomes earlier methodological flaws, such as low sensitivity. Detection of total Tyr-NO2 in different inflammatory states indicates that its measurement could have potential as a marker of disease, but measurement of nitration in specific proteins may be more informative than total Tyr-NO2.
59

Investigation into the Effects of Oxidative Stress on Reproductive Development.

Collins, Tracey Helen January 2007 (has links)
Nuclear transfer (NT), or cloning, which is the transfer of a donor nucleus to a recipient enucleated oocyte, has been successfully achieved to produce viable offspring in many species. The process is very inefficient, as reprogramming of the donor nucleus is required, and losses are high throughout development. Placentation abnormalities are a common feature amongst cloned animals. Incomplete nuclear reprogramming and erroneous epigenetic imprinting may contribute to aberrant protein transcription and DNA mutations, affecting mitochondrial metabolism and inducing cellular stress. In vitro produced embryos under high oxygen culture conditions may also suffer oxidative stress, with the resulting reactive oxygen species causing mitochondrial DNA mutations and cellular stress similar to clones. In this study, expression of oxidative stress protein markers (Hsp60, SOD2, Hsp70) in NT cotyledons were compared to artificial insemination (AI) at different time points of gestation (days 50, 100, and 150). As a continuum of the oxidative stress investigation in cloned cotyledons, in vitro produced embryos were cultured under 20% oxygen compared to the control 7% oxygen laboratory standard culture, with oxidative stress protein markers examined between the groups at blastocyst stage (day 7) and day 15. Embryo morphology was also observed to determine apparent physiological differences between the treatment and control embryos. No previous studies to date have investigated the developmental effects of oxidative stress in day 15 bovine embryos. The significant differences in oxidative stress proteins observed at several time points in the NT and AI groups were not repeatable, possibly due to sample freeze/thaw degradation. Morphological differences observed between embryos cultured in 20% oxygen and control groups were visually apparent, although not quantified. At day 15 manganese superoxide dismutase expression was significantly lower in the 20% group compared to control. The 20% oxygen group did not show higher heat shock protein 60 expression than control, however the same results have been observed in another study at blastocyst stage. The results of this study suggest that the effect of oxidative stress on embryonic development is evident yet inconclusive in bovine NT cotyledons, however does not appear apparent in day 15 embryos following culture in 20% oxygen.
60

Regulatory and functional study of human cytoglobin

Guo, Xiumei, January 2007 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2007. / Title proper from title frame. Also available in printed format.

Page generated in 0.0704 seconds