Spelling suggestions: "subject:"oxide fuel"" "subject:"óxide fuel""
1 |
Modeling of Thermal Transport Properties in Metallic and Oxide FuelsChen, Weiming 26 August 2021 (has links)
Thermal conductivity is a critical fuel performance property not only for current UO2 oxide fuel based light water reactors but also important for next-generation fast reactors that use U-Zr based metallic fuels. In this work, the thermal transport properties of both UO2 based oxide fuels and U-Zr based metallic fuels have been studied.
At first, molecular dynamics (MD) simulations were conducted to study the effect of dispersed Xe fission gas atoms on the UO2 thermal conductivity. Numerous studies have demonstrated that xenon (Xe) fission gas plays a major role on fuel thermal conductivity degradation. Even a very low Xe concentration can cause significant thermal conductivity reduction. In this work, the effect of dispersed Xe gas atoms on UO2 thermal conductivity were studied using three different interatomic potentials. It is found that although these potentials result in significant discrepancies in the absolute thermal conductivity values, their normalized values are very similar at a wide range of temperatures and Xe concentrations. By integrating this unified effect into the experimentally measured thermal conductivities, a new analytical model is developed to predict the realistic thermal conductivities of UO2 at different dispersed Xe concentrations and temperatures. Using this new model, the critical Xe concentration that offsets the grain boundary Kapitza resistance effect on the thermal conductivity in a high burnup structure is studied.
Next, the mechanisms on how Xe gas bubbles affect the UO2 thermal conductivity have been studied using MD. At a fixed total porosity, the effective thermal conductivity of the bubble-containing UO2 increases with Xe cluster size, then reaches a nearly saturated value at a cluster radius of 0.6 nm, demonstrating that dispersed Xe atoms result in a lower thermal conductivity than clustering them into bubbles. In comparison with empty voids of the same size, Xe-filled bubbles lead to a lower thermal conductivity when the number ratio of Xe atoms to uranium vacancies (Xe:VU ratio) in bubbles is high. Detailed atomic-level analysis shows that the pressure-induced distortion of atoms at bubble surface causes additional phonon scattering and thus further reduces the thermal conductivity.
For metallic fuels, temperature gradient and irradiation induced constituent redistribution in U-Zr based fuels cause the variation in fuel composition and the formation of different phases that have different physical properties such as thermal conductivity. In this work, a semi-empirical model is developed to predict the thermal conductivities of U-Zr alloys for the complete composition range and a wide range of temperatures. The model considers the effects of (a) scattering by defects, (b) electron-phonon scattering, and (c) electron-electron scattering. The electronic thermal resistivity models for the two pure components are empirically determined by fitting to the experimental data. A new mixing rule is proposed to predict the average thermal conductivity in U-Zr alloys based on their nominal composition. The thermal conductivity predictions by the new model show good agreement with many available experimental data. In comparison with previous models, the new model has further improvement, in particular for high-U alloys that are relevant to reactor fuel compositions and at the low-temperature regime for the high-Zr alloys.
The average thermal conductivity model for the binary U-Zr fuel is also coupled with finite element-based mesoscale modeling technique to calculate the effective thermal conductivities of the U-Zr heterogeneous microstructures. For a U-10wt.%Zr (U-10Zr) fuel at temperatures below the ɑ phase transition temperature, the dominant microstructures are lamellar δ-UZr2 and ɑ-U. Using the mesoscale modeling, the phase boundary thermal resistance R (Kapitza resistance) between δ-UZr2 and ɑ-U has been determined at different temperatures, which shows a T-3 dependence in the temperature range between 300K and 800K. Besides, the Kapitza resistance exhibits a strong dependence on the aspect ratio of the δ-UZr2 phase in the alloying system. An analytical model is therefore developed to correlate the temperature effect and the aspect ratio effect on the Kapitza resistance. Combining the mesoscale modeling with the newly developed Kapitza resistance model, the effective thermal conductivities of many arbitrary δ-UZr2 + ɑ-U heterogeneous systems can be estimated. / Doctor of Philosophy / Thermal transport in nuclear fuels is critical for both energy conversion efficiency and nuclear energy safety. Therefore, understanding the thermal transport properties such as thermal conductivity of nuclear fuels is not only important for current UO2 oxide fuel-based light water reactors but also critical for next-generation fast reactors that use U-Zr based metallic fuels. The thermal transport mechanisms in the two fuel types are fundamentally different: the predominant heat carriers in UO2 are phonons while they are electrons in U-Zr. This work studies the thermal transport properties for both types of nuclear fuels.
At first, molecular dynamics (MD) simulations were conducted to study the effect of dispersed xenon (Xe) fission gas atoms on the UO2 thermal conductivity, because Xe is the major fission gas product and even a small concentration of Xe can cause significant fuel thermal conductivity reduction. In this work, three different interatomic potentials were used to study the Xe effect. It is found that although these potentials result in significant discrepancies in the absolute thermal conductivity values, the normalized values are very similar at a wide range of temperatures and Xe concentrations. By integrating this unified effect into the experimentally measured thermal conductivities, a new analytical model is developed to predict the thermal conductivities of UO2 at different Xe concentrations and temperatures. Then this new model is used to study how dispersed Xe influences the effective thermal conductivity of heterogeneous UO2 microstructures with different grain sizes.
Next, we focused on how the presence of Xe bubbles degrades the effective UO2 thermal conductivity using MD. The effects of both Xe gas bubble size and pressure were examined. Our results show that dispersed Xe gas atoms or small Xe clusters result in a lower thermal conductivity than clustering them into larger bubbles if the total porosity is fixed. In comparison with empty voids of the same sizes, a Xe-filled bubble leads to a lower thermal conductivity when the bubbles pressure is high, because the distorted bubble surface can cause additional phonon scattering effect.
Besides the UO2 based oxide fuels, U-Zr based metallic fuels are promising fuel forms for next-generation fast reactors due to their high thermal conductivity. In this work, a semi-empirical model with a single set of parameters is developed to predict the average thermal conductivities of U-Zr alloys for the complete composition range and a wide range of temperatures. The thermal conductivities predicted by the new model have good agreement with many available experimental data, even if some experimental data are not included in the model fitting.
The above thermal conductivity model for the binary U-Zr alloy has been coupled with finite element-based mesoscale modeling to calculate the effective thermal conductivities of U-Zr heterogeneous microstructures containing ɑ-U and δ-UZr2 lamellar phases. Using the mesoscale modeling, the phase boundary thermal resistance R (Kapitza resistance) between δ-UZr2 and ɑ-U has been determined for a wide range of temperatures as well as the aspect ratio of the lamellar δ-UZr2 phase. An analytical model is therefore developed to correlate the effects of temperature and aspect ratio on the Kapitza resistance. Combining the mesoscale modeling with the newly developed Kapitza resistance model, the effective thermal conductivities of many U-Zr heterogeneous systems can be accurately estimated.
|
2 |
Estudo do mecanismo de bloqueio da sinterizacao no sistema UOsub(2)-Gdsub(2)Osub(3)DURAZZO, MICHELANGELO 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:44:35Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:39Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
3 |
Síntese e caracterização de trocadores iônicos inorgânicos a base de óxidos mistos estanho-titânio para utilização na recuperação de cádmio e níquel e estudos fotoluminescentesPAGANINI, PAULA P. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:53:26Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:58:38Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
4 |
Estudo do mecanismo de bloqueio da sinterizacao no sistema UOsub(2)-Gdsub(2)Osub(3)DURAZZO, MICHELANGELO 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:44:35Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:39Z (GMT). No. of bitstreams: 0 / A incorporação do gadolínio diretamente no combustível de reatores nucleares para geração de eletricidade é importante para compensação da reatividade e para o ajuste da distribuição da densidade de potência, permitindo ciclos de queima mais longos, com intervalo de recarga de 18 meses, otimizando-se a utilização do combustível. A incorporação do Gd2O3 sob a forma de pó homogeneizado a seco diretamente com o pó de UO2 é o método comercialmente mais atraente devido à sua simplicidade . Contudo, este método de incorporação conduz a dificuldades na obtenção de corpos sinterizados com a densidade niínima especificada, devido a um bloqueio no processo de sinterização. Pouca informação existe na literatura específica sobre o possível mecanismo deste bloqueio, restrita principalmente à hipótese da formação de uma fase (U,Gd)O2 rica em gadolínio com baixa difusividade. Este trabalho tem como objetivo a investigação do mecanismo de bloqueio da sinterização neste sistema, contribuindo para o esclarecimento da causa deste bloqueio e na elaboração de possíveis soluções tecnológicas. Foi comprovado experimentalmente que o mecanismo responsável pelo bloqueio é baseado na formação de poros estáveis devido ao efeito Kirkendall, originados por ocasião da formação da solução sólida durante a etapa intermediária da sinterização, sendo difícil a sua eliminação posterior, nas etapas finais do processo de sinterização. Com base no conhecimento deste mecanismo, possíveis propostas são apresentadas na direção da solução tecnológica do problema de densificação característico do sistema UO2-Gd203. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
5 |
Síntese e caracterização de trocadores iônicos inorgânicos a base de óxidos mistos estanho-titânio para utilização na recuperação de cádmio e níquel e estudos fotoluminescentesPAGANINI, PAULA P. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:53:26Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:58:38Z (GMT). No. of bitstreams: 0 / Este trabalho apresenta a síntese, caracterização e estudos de adssorção de trocadores iônicos inorgânicos a base de óxidos mistos estanho-titânio para recuperação dos metais cádmio e níquel de efluentes aquosos, descartados no meio ambiente principalmente através de baterias de Ni-Cd. Os trocadores foram sintetizados via método sol-gel modificado da mistura de cloreto de estanho(IV) e cloreto de titânio(III) com hidróxido de amônio. Os materiais obtidos: SnO2/TiO2 e SnO2/TiO2:Eu3+ foram caracterizados via espectroscopia de infravermelho, análise térmica, microscopia eletrônica de varredura (MEV), difração de raios-X (DRX) (método do pó) e espectroscopia eletrônica (excitação e emissão) para o trocador dopado com európio. Os mesmo materiais também foram sintetizados em matriz polimérica para a sua utilização em coluna, devido os materiais sintetizados apresentarem tamanho de cristalito na escala nanométrica. Determinaram-se as razões de distribuição dos metais, tomando-se como parâmetros a influência do pH, da concentração dos metais (determinando-se as isotermas de adsorção) e do tempo de contato (determinando-se a cinética de adsorção). Os trocadores apresentaram alta capacidade de troca, com porcentagens de adsorção acima de 90%, cinética rápida, superfícies de troca energeticamente heterogenias, adsorção física e processo de troca espontâneo. Para o trocador dopado foram estudadas as propriedades espectroscópicas e calculado os parâmetros de intensidade também se obteve um rendimento quântico satisfatório. / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
6 |
Estudo de diferentes rotas de preparacao de oxidos binarios de torio e uranioAYOUB, JAMIL M.S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:43:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:09:59Z (GMT). No. of bitstreams: 1
06645.pdf: 3401354 bytes, checksum: ff644fe657265b4b455934601c560694 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
7 |
Estudo de diferentes rotas de preparacao de oxidos binarios de torio e uranioAYOUB, JAMIL M.S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:43:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:09:59Z (GMT). No. of bitstreams: 1
06645.pdf: 3401354 bytes, checksum: ff644fe657265b4b455934601c560694 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
8 |
Estudo do mecanismo de bloqueio da sinterização no sistema UO2-Gd2O3 / Studies on the sintering blockage mechanism in the UO2-Gd2O3 systemDurazzo, Michelangelo 06 March 2001 (has links)
A incorporação do gadolínio diretamente no combustível de reatores nucleares para geração de eletricidade é importante para compensação da reatividade e para o ajuste da distribuição da densidade de potência, permitindo ciclos de queima mais longos, com intervalo de recarga de 18 meses, otimizando-se a utilização do combustível. A incorporação do Gd2O3 sob a forma de pó homogeneizado a seco diretamente com o pó de UO2 é o método comercialmente mais atraente devido à sua simplicidade . Contudo, este método de incorporação conduz a dificuldades na obtenção de corpos sinterizados com a densidade niínima especificada, devido a um bloqueio no processo de sinterização. Pouca informação existe na literatura específica sobre o possível mecanismo deste bloqueio, restrita principalmente à hipótese da formação de uma fase (U,Gd)O2 rica em gadolínio com baixa difusividade. Este trabalho tem como objetivo a investigação do mecanismo de bloqueio da sinterização neste sistema, contribuindo para o esclarecimento da causa deste bloqueio e na elaboração de possíveis soluções tecnológicas. Foi comprovado experimentalmente que o mecanismo responsável pelo bloqueio é baseado na formação de poros estáveis devido ao efeito Kirkendall, originados por ocasião da formação da solução sólida durante a etapa intermediária da sinterização, sendo difícil a sua eliminação posterior, nas etapas finais do processo de sinterização. Com base no conhecimento deste mecanismo, possíveis propostas são apresentadas na direção da solução tecnológica do problema de densificação característico do sistema UO2-Gd203. / The incorporation of gadolinium directly into nuclear power reactor fuel is important from the point of reactivity compensation and adjustment of power distribution enabling thus longer fliel cycles and optimized fuel utilization. The incorporation of Gd2O3 powder directly into the UO2 powder by dry mechanical blending is the most attractive process because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to blockages during the sintering process. There is little information in published literature about the possible mechanism for this blockage and this is restricted to the hypothesis based on formation of a low difiiisivity Gd rich phase (U,Gd)O2. The objective of this investigation has been to study the blockage mechanism in this system during the sintering process, contributing thus, to clarify the cause for the blockage and to propose feasible technological solutions. Experimentally it has been shown that the blocking mechanism is based on pore formation because of the Kirkendall effect. Formation of a solid solution during the intermediate stage of sintering leads to formation of large pores, which are difficult to remove in the final stage of sintering. Based on this mechanism, technical solutions have been proposed to resolve densification problems in the UO2-Gd2O3 system.
|
9 |
Contribution à l'identification et à l'évaluation d'un combustible UO2 dopé à potentiel oxygène maîtrisé / Contribution to the identification and the evaluation of a doped UO2 fuel with controlled oxygen potentialPennisi, Vanessa 20 October 2015 (has links)
La température et la pression partielle d’oxygène (PO2) constituent les paramètres majeurs contrôlantles évolutions thermochimiques en réacteur des combustibles nucléaires de type oxyde, et notammentla spéciation des produits de fission potentiellement corrosifs (Cs, I, Te). Pour limiter les risques derupture de la gaine en Zr par corrosion, une solution innovante consiste à imposer au combustible defonctionner dans un domaine de PO2 où les espèces chimiques des gaz de fission sont inoffensives, pardopage in-situ avec un tampon oxydo-réducteur solide. Le niobium, avec ses couples redoxNbO2/NbO et Nb2O5/NbO2, a été identifié comme le candidat le plus prometteur. Un procédé defabrication d’un combustible dopé niobium répondant à cet objectif et conforme aux spécificationsd’usage (densité, microstructure) a été optimisé. L’étude expérimentale du système UO2-NbOx a révélél’existence à 810°C d’une phase liquide entre UO2 et NbO2, non identifiée à ce jour. La caractérisationdes phases solides et en solution du niobium nous a conduit à proposer un modèle thermodynamiquede solubilité du dopant dans UO2 à 1700°C. Une étude approfondie de la spéciation du niobiumprécipité a permis d’identifier la présence simultanée dans le matériau des phases majeures NbO2 etNbO, ainsi que Nb en moindre teneur. La coexistence du niobium sous deux degrés d’oxydationdifférents constitue un élément-clé de démonstration d’un possible effet tampon in-situ, dont l’impactest observé sur certaines propriétés du combustible dépendantes de la PO2, la densification notamment.Les résultats confirment le potentiel prometteur des combustibles tamponnés en PO2 au regard de sesperformances en réacteur. / Temperature and oxygen partial pressure (PO2) of nuclear oxide fuels are the main parametersgoverning both their thermochemical evolution in reactor and the speciation of volatile fissionproducts such as Cs, I or Te. An innovative way to limit the risk of cladding rupture by corrosionunder irradiation consists in buffering the oxygen partial pressure of the fuel under operation in a PO2domain where the fission gas are harmless towards Zr clad, by using solid redox buffers as additives.Niobium, with its NbO2/NbO and Nb2O5/NbO2 redox couples has been found to be a promisingcandidate to this end. A manufacturing process of a buffered UO2 fuel, doped with niobium has beenoptimized, in order to fulfill usual specifications (density, microstructure). The experimental study ofthe UO2-NbOx system has shown the existence of a liquid phase between UO2 and NbOx at 810°C,which was not reported in the literature. The characterization of Nb containing phases present in UO2both in solid solution and as precipitates has lead us to propose a solubility thermodynamic model ofniobium in UO2 at 1700°C. An extensive study of the niobium precipitates shows the co-existence inthe fuel of NbO2 and NbO as major phases, together with small amounts of metallic Nb. The coexistenceof niobium under two oxidation states inside the fuel is a key element of demonstration of apossible in-situ buffering effect, which is likely to impact some properties of the material that aredependent upon PO2, such as densification. These results confirm the promising potential of oxygenbuffered fuels as regard to their performance in reactor.
|
10 |
Estudo do mecanismo de bloqueio da sinterização no sistema UO2-Gd2O3 / Studies on the sintering blockage mechanism in the UO2-Gd2O3 systemMichelangelo Durazzo 06 March 2001 (has links)
A incorporação do gadolínio diretamente no combustível de reatores nucleares para geração de eletricidade é importante para compensação da reatividade e para o ajuste da distribuição da densidade de potência, permitindo ciclos de queima mais longos, com intervalo de recarga de 18 meses, otimizando-se a utilização do combustível. A incorporação do Gd2O3 sob a forma de pó homogeneizado a seco diretamente com o pó de UO2 é o método comercialmente mais atraente devido à sua simplicidade . Contudo, este método de incorporação conduz a dificuldades na obtenção de corpos sinterizados com a densidade niínima especificada, devido a um bloqueio no processo de sinterização. Pouca informação existe na literatura específica sobre o possível mecanismo deste bloqueio, restrita principalmente à hipótese da formação de uma fase (U,Gd)O2 rica em gadolínio com baixa difusividade. Este trabalho tem como objetivo a investigação do mecanismo de bloqueio da sinterização neste sistema, contribuindo para o esclarecimento da causa deste bloqueio e na elaboração de possíveis soluções tecnológicas. Foi comprovado experimentalmente que o mecanismo responsável pelo bloqueio é baseado na formação de poros estáveis devido ao efeito Kirkendall, originados por ocasião da formação da solução sólida durante a etapa intermediária da sinterização, sendo difícil a sua eliminação posterior, nas etapas finais do processo de sinterização. Com base no conhecimento deste mecanismo, possíveis propostas são apresentadas na direção da solução tecnológica do problema de densificação característico do sistema UO2-Gd203. / The incorporation of gadolinium directly into nuclear power reactor fuel is important from the point of reactivity compensation and adjustment of power distribution enabling thus longer fliel cycles and optimized fuel utilization. The incorporation of Gd2O3 powder directly into the UO2 powder by dry mechanical blending is the most attractive process because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to blockages during the sintering process. There is little information in published literature about the possible mechanism for this blockage and this is restricted to the hypothesis based on formation of a low difiiisivity Gd rich phase (U,Gd)O2. The objective of this investigation has been to study the blockage mechanism in this system during the sintering process, contributing thus, to clarify the cause for the blockage and to propose feasible technological solutions. Experimentally it has been shown that the blocking mechanism is based on pore formation because of the Kirkendall effect. Formation of a solid solution during the intermediate stage of sintering leads to formation of large pores, which are difficult to remove in the final stage of sintering. Based on this mechanism, technical solutions have been proposed to resolve densification problems in the UO2-Gd2O3 system.
|
Page generated in 0.0302 seconds