• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of the smoldering front temperature in a carbon- and carbonate-containing porous medium in order to limit CO2 emissions / Contrôle de la température d'un front de combustion propagé dans un milieu poreux contenant du carbone et des carbonates afin de limiter les émissions de CO2

Sennoune, Mohamed 08 November 2011 (has links)
La thèse s’intéresse au contrôle de la température d’un front de combustion propagé dans un milieu poreux contenant du carbone fixe et des carbonates (CaCO3). L’objectif principal est de réduire la température, in situ (récupération d’huile ou production de gaz à partir d’un schiste bitumineux) ou dans un procédé (combustion de semicoke), afin de limiter la décarbonatation du milieu et les émissions induites de CO2. Le milieu réactif retenu pour réaliser les expériences en laboratoire est un schiste bitumineux préalablement broyé (0.5 à 2 mm) et pré-pyrolysé, appelé semicoke. Le front est propagé en co-courant. La première technique testée expérimentalement est l’ajout au semicoke d’un matériaux inerte (sable) et/ou d’un matériaux réactif (CaCO3) afin de faire varier le taux de carbone fixe et le taux de CaCO3 et ceci indépendamment. Nous montrons que l’augmentation de CaCO3 permet de baisser la température à 800 °C, mais pas en dessous, ce qui ne permet pas d’éviter la décarbonatation. Faire chuter le contenu en carbone fixe permet de baisser la température du front, voire d’atteindre l’extinction. Aux températures de propagation les plus basses, la décarbonatation est fortement limitée. En revanche le front ralentit car il n’utilise plus tout l’oxygène alimenté. La deuxième technique originale consiste à ajouter du CO2 (20 %molaire) dans l’air de combustion. Nous montrons que dans le cas d’un front chaud, ceci permet de réduire le taux de décarbonatation de 100% à 70%, et d’augmenter en parallèle la production de CO résultant de l’oxydation du carbone fixe, ce qui augmente le PCI du gaz produit. Sur un front plus froid, la décarbonatation qui était de 20% est totalement évitée par l’ajout de CO2. Enfin, des expériences sont proposées dans le mode de combustion “reaction trailing”, très peu connu et mis en oeuvre. Ce mode a l’intérêt majeur d’éviter les réactions de “Lower Temperature Oxidation” préjudiciables au rendement en huile ou en gaz d’un process in situ. Des expériences stables et répétables sont réalisées avec différents pourcentages d’oxygène dans le gaz alimenté. La température du front est directement liée à ce paramètre ; la décarbonatation est clairement limitée dans ce mode de propagation. Deux types de modélisation sont proposés. Un bilan de matière et d’énergie basé sur des expressions analytiques simples permet d’évaluer la température du front et sa vitesse de propagation. Un modèle numérique développé par l’IMFT se base sur des équations de transfert convectif/diffusif de chaleur et de matière, couplées aux réactions d’oxydation du carbone (en CO et en CO2) et de décarbonatation de CaCO3. Il décrit de façon très satisfaisante les expériences en mode “reaction leading” avec variation de la composition du milieu (première technique). / This PhD thesis focuses on the control of the smoldering front propagating in a porous medium containing fixed carbon and carbonates (CaCO3). The main objective is to reduce the front temperature, in situ (oil recovery or gas production from oil shale) or in process (combustion of semicoke), in order to limit the medium decarbonation and the resulting CO2 emissions. The reactive porous medium retained to realize the laboratory experiments is a crushed (0.5 to 2 mm) and pre-pyrolyed oil shale, called semicoke. The front propagates in co-current. The first technique experimentally tested is the addition to the semicoke of an inert material (sand) and/or a reactive material (CaCO3) to vary the contents of fixed carbon and of CaCO3, independently. We show that the increase of the CaCO3 content enables to reduce the temperature to 800 °C, but not below; this does not allow to avoid decarbonation. Bringing down the fixed carbon content enables to reduce the front temperature, see even to reach extinction. In the lowest temperatures of propagation, the decarbonation is strongly limited. On the other hand, the front slows down because it does not use all of the fed oxygen. The second original technique consists in adding CO2 (20 mol.%) to the oxidizer air. We show that for a hot front, the decarbonated fraction is reduced from 100% down to 70%, and the CO production at fixed carbon oxidation is increased; this leads to increase the LCV of the produced gas. For a cold front, the decarbonation which was 20%, is totally avoided by adding CO2. Finely, experiments are proposed in the “reaction trailing” combustion mode, little known and implemented. This mode has the major interest to avoid the reactions of “Lower Temperature Oxidation” prejudicial for oil or gas yields in in situ process. Stable and repeatable experiments are realized with different oxygen fractions in feeding gas. The front temperature is directly linked to this parameter; the decarbonation is clearly limited in this mode of propagation. Two types of modeling are proposed. A mass and thermal balance based on simple analytical expressions enables to evaluate the front temperature and velocity. A numerical model developed by IMFT is based on convective/diffusive heat and mass transfer equations coupled with the oxidation reactions (into CO and CO2) and CaCO3 decarbonation is proposed. It describes in a very satisfactory way the experiments in the “reaction leading” mode with variation of the medium composition (first technique).

Page generated in 0.1096 seconds