Spelling suggestions: "subject:"doxydation duu cyclohexane"" "subject:"doxydation dud cyclohexane""
1 |
Synthèse et caractérisation de matériaux mésoporeux à base d'oxyde de vanadium pour l'oxydation de composés organiques / Synthesis and Characterization of Vanadium-containing Mesoporous Silica and its Application in the Catalysis of Oxidation ReactionZheng, Yuting 02 November 2014 (has links)
Les matériaux à base de vanadium sont largement utilisés comme catalyseurs pour l'oxydation de composés organiques. Les propriétés catalytiques des catalyseurs au vanadium pour l'oxydation dépendent de l'état et de la stabilité des espèces de vanadium. Dans cette étude, nous développons des nouveaux catalyseurs hétérogènes au vanadium pour la réaction d’oxydation.Dans la première partie du travail, les matériaux mésoporeux à base de silice (MCM-41) contenant du Al (III) et du Ti (IV) sont envisagés comme supports. L'effet d'ancrage chimique de ces hétéroatomes sur les ions V (V) et leur dispersion dans la silice MCM- 41 ont été étudiés à l'aide d'une analyse quantitative des spectres UV-visible de réflectance diffuse. En complément, les matériaux ont été caractérisés par diffraction des rayons X (DRX), mesure de sorption d’azote, spectroscopie de résonance magnétique électrique (RPE) et la spectroscopie Raman. Les spectres UV-visible des échantillons hydratés et déshydratés mettent en évidence la coexistence de plusieurs espèces V (V) de différente nucléarité et différent taux d'hydratation. Le décalage vers le bleu de la bande UV des échantillons contenant comme des additifs les ions Al(III) ou Ti(IV) est cohérent avec une meilleure dispersion des ions vanadium présentant entre autres plus d’espèces mononucléaires (isolées). L'effet bénéfique du titane sur la dispersion de vanadium est compatible avec la formation directe de ponts covalents de type Ti-O-V.Dans la seconde partie, les ions V(IV) ont été déposés sur des matériaux mésoporeux à base de silice en utilisant une nouvelle stratégie dite de pochoir moléculaire ou « Molecular-Stencil Patterning ». La stratégie de pochoir moléculaire s’applique à la silice contenant des tensioactifs ioniques en utilisant ces derniers comme agent de masquage lors du greffage covalent de diverses fonctions. Cette stratégie de surface moléculaire permet de contrôler à la fois le voisinage moléculaire et la dispersion à longue distance des espèces de vanadium entre elles. La caractérisation a été effectuée en utilisant plusieurs méthodes telles l’analyse thermogravimétrique (ATG), la spectroscopie de résonance magnétique nucléaire (RMN), la spectroscopie infrarouge (IR) et la spectroscopie UV-visible. L'incorporation des ions titane (IV) joue le rôle d’ancre chimique pour les ions V(IV) comme dans le chapitre précédent. Il est montré qu’une proportion de V/Ti inférieure à un et proche de trois génère les meilleures conditions pour éviter la formation de gros agrégats d’oxyde de vanadium.Enfin, ces nouveaux matériaux au vanadium ont été testés en phase liquide pour catalyser l'oxydation partielle du cyclohexane en une huile désignée par son rapport molaire K/A de cyclohexanone (K) et de cyclohexanol (A). Ce mélange est utilisé comme telle en chimie industrielle de base, an particulier comme précurseurs de l'acide adipique et de caprolactame pour la synthèse du nylon. Les tests ont démontré que l’introduction de titane combiné à la stratégie de pochoir moléculaire a notablement amélioré les propriétés catalytiques de ce type de catalyseurs au vanadium.En conclusion, la silice MCM-41 au vanadium a été conçu par l’introduction des hétéroatomes d'ancrage et de la stratégie de pochoir moléculaire, afin d'améliorer la dispersion et la stabilité des sites actifs. Les matériaux conçus ont montré de meilleures propriétés et caractéristiques catalytiques dans divers caractérisation et la réaction d'oxydation. / Vanadium-based materials are widely used as catalysts for oxidation of organic compounds. The catalytic properties of vanadium catalysts for oxidation are related closely to the state and the stability of vanadium species. Therefore, a series of vanadium-containing MCM-41 silica were designed and developed in this study, and their catalytic application for oxidation reactions was evaluated as well.In the first part of work, the chemical anchoring effect of Al(III) or Ti(IV) heteroatoms on the dispersion of V (V) in MCM-41 type silica was investigated using a quantitative analysis of diffuse reflectance UV-visible spectra. The characteristic properties of prepared materials were determined by various characterization such as X-ray diffraction (XRD), N2 sorption measurement, Electron paramagnetic resonance (EPR) spectroscopy, UV-visible spectroscopy and Raman spectroscopy. UV-visible spectra of hydrated and dehydrated samples evidenced the coexistence of several V(V) species of different oligomerization and hydration levels. The global blue shift of the band in the presence of Al(III) or Ti(IV) additives was then assigned to a higher proportion of less clustered and isolated V(V) species. The stronger beneficial effect of Ti on the vanadium dispersion is consistent with a higher stability of the X-O-V bridges moving from X = Si to X = Al and Ti. In the second part, new mesoporous silica materials containing vanadium species were synthesized according to the molecular stencil patterning technique. Molecular stencil patterning is developed specifically for silica templated with ionic surfactants used as masking agent to sequentially immobilize via covalent bonding (grafting) different functions. This molecular surface engineering was proved to improve the vanadium species dispersion according to Thermogravimetric Analysis (TGA), Nuclear Magnetic Resonance spectroscopy (NMR), Infrared spectroscopy (IR) and UV-visible spectroscopy. The incorporation of titanium species played again the role to immobilize the vanadium species as the results in previous work. The V/Ti ratio should be less than 1 to control the formation of clusters of vanadium species.Lastly, the vanadium-containing materials were applied to the liquid phase oxidation of cyclohexane into cyclohexanol (A) and cyclohexanone (K). A mixture of these two products is often called K/A oil in the industrial chemical production. K/A oil is widely used as a raw material for adipic acid and caprolactam in the nylon industry. The catalysis results proved that the modification by adding titanium chemical anchors combined with the MSP technique improve the catalytic properties of vanadium-containing heterogeneous catalysts.In conclusion, the dispersion and stability of vanadium active sites has been improved in new syntheses of vanadium-containing MCM-41 type silica by combining both anchoring heteroatoms and molecular stencil patterning techniques. Such a novel design leads to better catalytic performance in oxidation reaction in correlation with the structural and physical characteristics of the material.
|
Page generated in 0.0839 seconds