• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 45
  • 9
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 125
  • 125
  • 125
  • 57
  • 43
  • 43
  • 43
  • 32
  • 28
  • 23
  • 23
  • 20
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Novel Nanostructure Electrocatalysts for Oxygen Reduction and Hydrogen Evolution Reactions

Luo, Lin January 2019 (has links)
Philosophiae Doctor - PhD / The widespread use of fossil energy has been most convenient to the world, while they also cause environmental pollution and global warming. Therefore, it is necessary to develop clean and renewable energy sources, among which, hydrogen is considered to be the most ideal choice, which forms the foundation of the hydrogen energy economy, and the research on hydrogen production and fuel cells involved in its production and utilization are naturally a vital research endeavor in the world. Electrocatalysts are one of the key materials for proton exchange member fuel cells (PEMFCs) and water splitting. The use of electrocatalysts can effectively reduce the reaction energy barriers and improve the energy conversion efficiency.
32

Studies on Bifunctional Oxygen Electrocatalysts with Perovskite Structures / ペロブスカイト構造を有する二機能性空気極触媒に関する研究

Miyahara, Yuto 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20397号 / 工博第4334号 / 新制||工||1672(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 作花 哲夫, 教授 陰山 洋 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
33

Exploiting Electrocatalyst for Energy Conversion: From Structure to Property

Shen, Xiaochen 29 August 2019 (has links)
No description available.
34

In Situ Induction Heating of Electrodes and Applications

Rahman, Mohammad Azizur 10 August 2018 (has links)
This thesis describes the fabrication of an induction heating apparatus and its use to directly heat small platinum and gold electrodes in electrolyte solution. The heating characteristics of the electrodes were studied via the entropic shift of redox potential with temperature and change in Faradaic current. Temperature pulse voltammetry (TPV) and cyclic voltammetry were used for temperature calibration under various heating conditions. The maximum temperature reached at a 0.25 mm diam platinum electrode surface in solution was 84 degrees C. At heated electrodes an increase in current was found to be due to convection and diffusion. TPV was performed with inductively heated gold (0.5 mm diam) and platinum electrodes, which gave complete current-potential-temperature information. Induction heated Pt electrodes were employed to investigate the kinetics and mass transfer process of oxygen reduction reaction (ORR) in acidic and alkaline media.
35

Investigation of Nanoceria-modified Platinum-gold Composite Electrodes for the Electrochemical Reduction of Oxygen in Alkaline Media

Hegishte, Rahul 01 January 2011 (has links)
Platinum-gold and nanoceria-modified platinum-gold electrodes were prepared on a platinum surface via electrochemical reduction of solutions of platinum and gold salts in the dispersion of nanoceria. The molar ratios of Pt and Au were varied in both PtAu and PtAu/CeO₂ electrodes while the total concentration of the metals was maintained at 2 x 10⁻³M and the concentration of nanoceria was maintained constant at 5 x 10⁻³M. The electrodes were characterized by their cyclic voltammetry curves in 0.5M sulfuric acid solution. The electrochemically active area of the electrodes was determined using the copper underpotential deposition method. The linear sweep voltammograms of the PtAu and PtAu/CeO₂ electrodes were plotted from -1V to 0V vs. Ag/AgCl, 3M KCl reference electrode using the rotating disk electrodes for the rotation speeds from 200 to 3600rpm in an oxygen saturated 0.1M sodium hydroxide solution. The values of the kinetic controlled current density were determined from the rotating disk voltammetry. The values of the limiting current density for each rotation speed were used to plot the Koutecky-Levich plots for the electrodes. The rate constants were obtained from the Koutecky-Levich plots for each composition of the electrode. The values of kinetic current density and the rate constants indicated that the addition of Au enhances the ORR rates in both the PtAu and the PtAu/CeO₂ electrodes. The values of the kinetic current densities of the PtAu/CeO₂ were lower than that of the PtAu electrodes owing to the poor electrical conductivity of ceria. The Koutecky-Levich plots for the PtAu and the PtAu/CeO₂ electrodes are linear for the four-electron reduction of oxygen in the alkaline media, which indicates that the overall reaction follows the first order kinetics. The electron transfer rate constants obtained from the Koutecky-Levich plots for the PtAu and the PtAu/CeO₂ electrodes both were found to increase in values with the addition of Au. The Tafel plots were plotted for the PtAu and PtAu/CeO₂ electrodes and the values of Tafel slopes were found to be in a small range for lower amounts of Au which indicated that the ORR rates were enhanced in lower amounts of Au. The values of Tafel slopes were found to be much higher for the ceria-modified PtAu electrodes as compared to the PtAu electrodes, which indicate the lower rates of ORR after the modification with ceria. Also, the ORR rates for the electrodes with smaller amounts of Au in PtAu/CeO₂ were higher than those in the larger amounts of Au.
36

Computational Approach To The Problems Of Electro- And Photo-catalysis

Zuluaga, Sebastian 01 January 2013 (has links)
The main objective of this work is to gain basis for rational design of catalysts used in fuel cells for conversion of chemical energy stored in hydrogen molecules into electric energy, as well as photo-catalysts used for hydrogen production from water under solar irradiation. This objective is achieved by applying the first principles computational approach to reveal relationship among compositions of materials under consideration, their electronic structure and catalytic activity. A major part of the work is focused on electro-catalysts for hydrogen fuel cells. Platinum (Pt) is widely used in the electrodes of fuel cells due to its good catalytic properties. However, Pt is an expensive and scarce element, its catalytic activity is not optimal and also it suffers from CO poisoning at anode. Therefore the search for new catalytic materials is needed for large scale implementation of fuel cells. The main direction of search of more efficient electro-catalysts is based in the design in which an active element monoatomic layer (AE) is deposited on a metal substrate (MS) made of a cost-effective material. Two goals are achieved by doing this: on the one hand, the cost of the catalytic system is reduced by reducing the amount of the AE in the system and on the other hand the catalytic properties of the AE can be tuned through its interactions with the MS. In the first part of this work the Pd-based alloys and layered structures have been studied as promising electro-catalysts for the ORR on the fuel cell cathodes, more precisely Pd-Co alloys and Pd/M/Pd (M=Co,Fe). There exists a robust model linking the activity of a surface toward ORR to computable thermodynamic properties of the system and further to the binding energies iv of the ORR intermediates on the catalyst surface. A more challenging task is to find how to tune these binding energies through modification of the surface electronic structure that can be achieved by varying the surface composition and/or morphology. To resolve this challenge, the electronic structure, binding energies of intermediates and the ORR free energies have been calculated within the density functional theory (DFT) approximation. The results presented in this work show that in contrast to the widely accepted notion, the strain exerted by a substrate on AE hardly affects the surface activity toward ORR, while the hybridization of the electronic states of the AE-and MS-electronic states is the key factor controlling the catalytic properties of these systems. Next it is shown that the catalytic activity of the promising anode electrocatalysts, such as Pt/M, M=Au, Ru and Pd, is also determined by the AE-MS hybridization with a minor effect of the strain. Furthermore, we have shown that, if AE is weakly bound to the substrate (as it is for Pt/Au), surface reconstruction occurs. This leads to the breaking of the relation between the electronic structure of the clean surface and the reactivity of the sytem. Other kind of promising ORR catalysts is designed in the form of Ru nanoparticles modified by chalcogens. In this work, I present the results obtained for small Ru clusters and flat Ru facets modified with chalcogens (S, Se and Te). The O and OH binding energies are chosen as descriptors of the ORR. The results on the two systems are compared, concluding that large clusters with relative large flat facets have higher catalytic activity due to the absence of low coordinated and thus high reactive Ru atoms. Regarding the problem of the hydrogen production via photo-catalytic splitting of water, one of the challenges is tuning the band gap of the photo-anodes to optimal levels. Graphitic carbon nitride (g-C3N4) is a promising material to be used as a photo-anode, however, a v reduction of the band gap width by rational doping of the material would improve the efficiency significantly. This issue is addressed in the last chapter of this work. Two problems are considered: a) the stability of the doped system and b) the band gap width. To address the first problem the ab-initio thermodynamics approach has been used, finding that the substitution of C and N with the doping agent (B, C, N, O, Si and P) is thermodynamically preferred over the interstitial addition of dopant to the g-C3N4 structure. However, due to high kinetic energy barriers for the detachment of C and N atoms, involved in the substitution doping, the interstitial addition found to be kinetically more favorable. Since the density functional theory fails to reproduce the band gap of semiconductors correctly, the GW approximation was used to study the band gap of the system. The results indicate that the g-C3N4 system maintain its semiconductor character if doped with B, O and P under certain conditions, while reducing the band gap.
37

Application of synthetic tricopper complexes and NOx in energy conversion and storage

Zhang, Weiyao 04 November 2022 (has links)
No description available.
38

Structural Studies of Pt-Based Electrocatalysts for Polymer Electrolyte Fuel Cells / 白金系燃料電池用カソード触媒の構造と活性に関する研究

Liu, Chen 23 March 2021 (has links)
学位プログラム名: 京都大学大学院思修館 / 京都大学 / 新制・課程博士 / 博士(総合学術) / 甲第23346号 / 総総博第19号 / 新制||総総||3(附属図書館) / 京都大学大学院総合生存学館総合生存学専攻 / (主査)教授 寶 馨, 教授 内本 喜晴, 特定教授 橋本 道雄 / 学位規則第4条第1項該当 / Doctor of Philosophy / Kyoto University / DFAM
39

Study of the oxygen reduction reaction on platinum with scanning electrochemical microscopy and rotating disk voltammetry

Sun, Xiaojing 15 December 2007 (has links)
The tip generation/substrate collection mode (TG/SC) of scanning electrochemical microscopy (SECM) was used to study the ORR reactivity on Pt catalysts in sulfuric acid solution. The SECM reactivity image and the photographic image of different single crystalline regions of the etched Pt electrode correlated well. The electron backscatter diffraction (EBSD) image of Pt confirmed the surface single crystalline orientation. The image resolution is improved by employing smaller tip-substrate distance. The kinetics of the ORR on Pt surface was also studied at -15 - 30 C by means of the rotating disk voltammetry techniques. The calculated Tafel slopes for 0.1 m and 0.9 m HClO4 changed with decreasing temperature, indicating lower kinetics at low temperature. Peroxide is produced at potentials below 0 V vs SCE.
40

Theoretical Studies of Fuel Cell Reaction Mechanisms: Water and Oxygen on Platinum Electrodes

Zhang, Tianhou 08 July 2008 (has links)
No description available.

Page generated in 0.1482 seconds