Spelling suggestions: "subject:"exygen solubility"" "subject:"exygen volubility""
1 |
Topology and Dynamics of Macromolecular Aggregates Studied by Pressure NMRAl-Abdul-Wahid, Mohamed Sameer 06 December 2012 (has links)
The topology and dynamics of biomolecules are intricately linked with their biological function. The focus of this thesis is the NMR-based measurement of topology and dynamics in biomolecular systems, and methods of measuring immersion depth and orientation of membrane-associated molecules.
In detergent micelles and lipid bilayers, the local concentrations of hydrophobic and hydrophilic molecules are a function of their bilayer immersion depth. For paramagnetic molecular oxygen or metal cations, the magnitudes of the associated paramagnetic isotropic contact shifts and relaxation rate enhancements (PREs) are therefore depth-dependent. NMR measurements of these effects reveal the immersion depth of bilayer- or detergent-associated molecules.
This work first explores transbilayer oxygen solubility and thermodynamics, as measured from contact shifts and PREs of the constituent lipid molecules in the presence of 30 bar oxygen. Contact shifts revealed the transmembrane O2 solubility profile spans a factor of seven across the bilayer, while PREs indicated that oxygen partitioning into bilayers and dodecylphosphocholine (DPC) micelles is entropically driven.
Next, this work describes how paramagnetic effects from molecular oxygen and Ni(II) cations may be employed to study the immersion depth and topology of drug and protein molecules in DPC micelles. In one study, the positioning of the amphipathic drug imipramine in micelles was determined from O2- and Ni(II)-induced contact shifts. A second study, relying solely on O2-induced PREs, determined the tilt angles and micelle immersion depths of the two alpha helices in a monomeric mutant of the membrane protein phospholamban. A third study utilized 19F NMR to explore the importance of juxtamembraneous tryptophans on the topology of the membrane protein synaptobrevin, via O2-induced contact shifts and solvent-induced isotope shifts of a juxtamembraneous 19F-phenylalanine. Comparison of synaptobrevin constructs with zero, one, and two juxtamembraneous tryptophans revealed that while one tryptophan is sufficient to ‘anchor’ the protein in micelle, the addition of a second tryptophan dampens local dynamics.
These solution state NMR studies demonstrate how paramagnetic effects from dissolved oxygen, complemented with measurements of local water exposure, provide detailed, accurate descriptions of membrane immersion depth and topology. These techniques are readily extended to the study of a wide range of biomolecules.
|
2 |
Topology and Dynamics of Macromolecular Aggregates Studied by Pressure NMRAl-Abdul-Wahid, Mohamed Sameer 06 December 2012 (has links)
The topology and dynamics of biomolecules are intricately linked with their biological function. The focus of this thesis is the NMR-based measurement of topology and dynamics in biomolecular systems, and methods of measuring immersion depth and orientation of membrane-associated molecules.
In detergent micelles and lipid bilayers, the local concentrations of hydrophobic and hydrophilic molecules are a function of their bilayer immersion depth. For paramagnetic molecular oxygen or metal cations, the magnitudes of the associated paramagnetic isotropic contact shifts and relaxation rate enhancements (PREs) are therefore depth-dependent. NMR measurements of these effects reveal the immersion depth of bilayer- or detergent-associated molecules.
This work first explores transbilayer oxygen solubility and thermodynamics, as measured from contact shifts and PREs of the constituent lipid molecules in the presence of 30 bar oxygen. Contact shifts revealed the transmembrane O2 solubility profile spans a factor of seven across the bilayer, while PREs indicated that oxygen partitioning into bilayers and dodecylphosphocholine (DPC) micelles is entropically driven.
Next, this work describes how paramagnetic effects from molecular oxygen and Ni(II) cations may be employed to study the immersion depth and topology of drug and protein molecules in DPC micelles. In one study, the positioning of the amphipathic drug imipramine in micelles was determined from O2- and Ni(II)-induced contact shifts. A second study, relying solely on O2-induced PREs, determined the tilt angles and micelle immersion depths of the two alpha helices in a monomeric mutant of the membrane protein phospholamban. A third study utilized 19F NMR to explore the importance of juxtamembraneous tryptophans on the topology of the membrane protein synaptobrevin, via O2-induced contact shifts and solvent-induced isotope shifts of a juxtamembraneous 19F-phenylalanine. Comparison of synaptobrevin constructs with zero, one, and two juxtamembraneous tryptophans revealed that while one tryptophan is sufficient to ‘anchor’ the protein in micelle, the addition of a second tryptophan dampens local dynamics.
These solution state NMR studies demonstrate how paramagnetic effects from dissolved oxygen, complemented with measurements of local water exposure, provide detailed, accurate descriptions of membrane immersion depth and topology. These techniques are readily extended to the study of a wide range of biomolecules.
|
3 |
Electrochemical Investigation of the Reaction Mechanism in Lithium-Oxygen BatteriesLindberg, Jonas January 2017 (has links)
Lithium-oxygen batteries, also known as Lithium-air batteries, could possibly revolutionize energy storage as we know. By letting lithium react with ambient oxygen gas very large theoretical energy densities are possible. However, there are several challenges remaining to be solved, such as finding suitable materials and understanding the reaction, before the lithium-oxygen battery could be commercialized. The scope of this thesis is focusing on the latter of these challenges. Efficient ion transport between the electrodes is imperative for all batteries that need high power density and energy efficiency. Here the mass transport properties of lithium ions in several different solvents was evaluated. The results showed that the lithium mass transport in electrolytes based on the commonly used lithium-oxygen battery solvent dimethyl sulfoxide (DMSO) was very similar to that of conventional lithium-ion battery electrolytes. However, when room temperature ionic liquids were used the performance severely decreased. Addition of Li salt will effect the oxygen concentration in DMSO-based electrolytes. The choice of lithium salt influenced whether the oxygen concentration increased or decreased. At one molar salt concentration the highest oxygen solubility was 68 % larger than the lowest one. Two model systems was used to study the electrochemical reaction: A quartz crystal microbalance and a cylindrical ultramicroelectrode. The combined usage of these systems showed that during discharge soluble lithium superoxide was produced. A consequence of this was that not all discharge product ended up on the electrode surface. During discharge the cylindrical ultramicroelectrodes displayed signs of passivation that previous theory could not adequately describe. Here the passivation was explained in terms of depletion of active sites. A mechanism was also proposed. The O2 and Li+ concentration dependencies of the discharge process were evaluated by determining the reactant reaction order under kinetic and mass transport control. Under kinetic control the system showed non-integer reaction orders with that of oxygen close to 0.5 suggesting that the current determining step involves adsorption of oxygen. At higher overpotentials, at mass transport control, the reaction order of lithium and oxygen was zero and one, respectively. These results suggest that changes in oxygen concentration will influence the current more than that of lithium. During charging not all of the reaction product was removed. This caused an accumulation when several cycles was examined. The charge reaction pathway involved de-lithiation and bulk oxidation, it also showed an oxygen concentration dependence. / Litiumsyrebatteriet, även känt som litiumluftbatteriet, kan potentiellt revolutionera vårt förhållande till energilagring. Genom att låta litium reagera med syrgas från luften kan teoretiskt höga energitätheter uppnås. Dock så behöver många problem lösas, så som att hitta lämpliga elektrod- och elektrolytmaterial samt att få en ökad förståelse för reaktionsmekanismen, innan litiumsyrebatteriet kan kommersialiseras. Den här avhandlingen behandlar de sistnämnda av dessa problem. För att ett batteri ska kunna leverera hög effekttäthet och energieffektivitet krävs en effektiv jontransport mellan elektroderna. Här utvärderades masstransporten hos flera olika elektrolyter. Resultatet visade att masstransporten av litium i en litiumsyrebatterielektrolyt (baserad på dimetylsulfoxid (DMSO)) är likvärdig med en konventionell litiumjonbatterielektrolyt. När elektrolyter baserade på jonvätskor användes uppvisades väldigt stora energiförluster. När litiumsalt tillsattes påverkades lösligheten av syre i DMSO-baserade elektrolyter. Vilken sorts litiumsalt som användes påverkade om lösligheten av syre ökade eller minskade. Vid en saltkoncentration på en molar var den högsta syrelösligheten 68 \% större än den lägsta. Två olika modellsystem används för att studera den elektrokemiska reaktionen: En elektrokemisk kvartskristallmikrovåg och en cylindrisk ultramikroelektrod. Vid kombinerad användning av dessa system påvisades att löslig litiumsuperoxid bildades vid urladdningen. Följden av detta blev att endast delar av urladdningsprodukten hamnade på elektroden. Vid urladdning visade ultramikroelektroderna tecken på passivering som inte kunde beskrivas av tidigare teori. Här föreslås att passiveringen uppstår på grund av en blockering av de aktiva säten där reaktionen fortskrider. För denna process föreslås även en detaljerad mekanism. Urladdningsprocessens koncentrationsberoende utvärderades genom att bestämma reaktionsordningen för syre och litium under kinetisk- och masstransport kontroll. Under kinetisk kontroll fanns inga heltalsreaktionsordningar, för syre var reaktionsordningen nära 0.5 vilket föreslår att det reaktionssteg som bestämmer strömstorleken innefattar en adsorption av syre. Vid högre överpotentialer, då systemet var under masstransportkontroll, var reaktionsordningarna för litium och syre noll respektive ett. Detta föreslår att ändringar i syrekoncentration påverkar strömmen betydligt mer än vad det gör för litium. Under uppladdning kunde inte all reaktionsprodukt avlägsnas från elektroden. Detta ledde till en ackumulation då flera cykler studerades. Uppladdningens delsteg innefattade en delitiering följt av en oxidation av reaktionsproduktbulken. Denna process uppvisade även ett syrekoncentrationsberoende. / <p>QC 20171114</p>
|
Page generated in 0.0623 seconds