• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SYNTHESIS, CRYSTAL STRUCTURE AND MAGNETISM OF PEROVSKITE-BASED TRANSITION METAL OXIDES

Ramezanipour, Farshid 10 1900 (has links)
<p>A series of layered perovskite-based compounds were synthesized and studied as follows.</p> <p>La<sub>5</sub>Mo<sub>2.76(4)</sub>V<sub>1.25(4)</sub>O<sub>16</sub> is a new pillared-perovskite synthesized by solid state chemistry method. It has layers of corner-sharing octahedra separated by dimers of edge-sharing octahedra, and is the first Mo-based pillared-perovskite whose magnetic structure was determined by neutron diffraction.</p> <p>Ca<sub>2</sub>FeMnO<sub>5</sub> is an oxygen-deficient-perovskite with a brownmillerite-type ordering of oxygen vacancies, resulting in layers of corner-sharing octahedra separated by chains of corner-sharing tetrahedra. The octahedral layer contains mostly (~87%) Mn, while the tetrahedral layer is mainly (~91%) occupied by Fe. Long-range G-type magnetic ordering is present, where the moment on each site is coupled antiferromagnetically relative to all nearest neighbors.</p> <p>Ca<sub>2</sub>FeCoO<sub>5</sub> has a brownmillerite superstructure with space group <em>Pcmb</em>, a rare space group for brownmillerites that requires doubling of one unit cell axis. Ca<sub>2</sub>FeCoO<sub>5 </sub>is the first brownmillerite to contain intra-layer cation ordering. It has a long-range G-type ordering, and is the first brownmillerite to show spin re-orientation as function of temperature.</p> <p>Sr<sub>2</sub>FeMnO<sub>5+y</sub> was synthesized in both air (y~0.5) and argon (y~0), both of which resulted in vacancy-disordered cubic structures. The argon compound has a local brownmillerite structure, i.e. local ordering of vacancies. It has a superparamagnetic state below ~55K, with domains of short range (50Å) G-type ordering at 4K. For the air synthesized compound, y~0.5, long range G-type ordering is observed in ~4% of the sample.</p> <p>Sr<sub>2</sub>Fe<sub>1.9</sub>M<sub>0.1</sub>O<sub>5+y</sub> (M=Mn, Cr, Co; y= 0, 0.5) were synthesized in both air(y~0.5), and argon(y~0). All argon materials are brownmillerites with G-type magnetic ordering, but T<sub>N</sub>’s are significantly different. The air-synthesized Co-material has long range vacancy ordering and magnetic ordering, while the Mn and Cr-materials (air) lack such orderings and both show spin-glass-like transitions.</p> <p>Sr<sub>2</sub>Fe<sub>1.5</sub>Cr<sub>0.5</sub>O<sub>5</sub> has a vacancy-disordered cubic structure, but contains long range G-type magnetic ordering, unlike the other vacancy-disordered materials studied.</p> / Doctor of Philosophy (PhD)

Page generated in 0.109 seconds