• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Humidity-Resistant Coating to Impart High Oxygen Barrier Performance to Food Packaging Films

Cox, Ryan Yinghua 01 June 2017 (has links)
Oxygen barrier coatings have the potential to greatly extend the lifetime of certain food products by incorporating them into existing food packaging. Present technologies face definite challenges of maintaining high performance, while attaining simple and inexpensive preparation methods. The oxygen barrier effect obtained with these coatings is also susceptible to a plasticization effect when exposed to high humidity, since water vapor molecules are readily soluble in typically hydrophilic resins. In this work, we demonstrate a 1 – 2 micron thick oxygen barrier coating, prepared on a 12 micron poly(ethylene terephthalate) substrate, that has oxygen transmission rates as low as 1.44 cc m-2 day-1 under standard conditions and can maintain similar oxygen barrier performance at high humidity. This degree of oxygen barrier meets the standard of 1 – 10 cc m-2 day-1 established for food packaging applications. The coating is prepared through use of sol-gel chemistry between poly(vinyl alcohol) and vinyltrimethoxsilane molecules, which form a strong network resin through hydrolysis and condensation reactions. The formulation of these oxygen barrier coatings allows for variability of solids percentage and viscosity without significant change in performance. The ability to scale up the preparation of these coated films was tested successfully on an industrial flexographic printing press.
2

Ionic Conducting Ceramic Membrane Reactor for Partial Oxidation of Light Hydrocarbons

Akin, Figen Tulin 21 May 2002 (has links)
No description available.
3

Preparation and performance of BSCF-based Mixed Ionic-Electronic Conducting (MIEC) ceramics

Lu, Huanghai January 2016 (has links)
Preparation and performance of the perovskite-type barium strontium cobalt iron oxide (Ba_0.5 Sr_0.5 Co_0.8 Fe_0.2 O_(3-δ), BSCF) and its doped compositions were studied in this dissertation. Three transition metals (copper, nickel and niobium) were substituted into the parent BSCF at various ratios to create the formula Ba_0.5 Sr_0.5 (Co_0.8 Fe_0.2)_(1-x) M_x O_(3-δ) (0.02≤x≤0.30; M=Cu,Ni or Nb). Two synthetic methods (solid-state reaction and wet chemical co-precipitation) were developed for the preparation of starting powders. In the previous reports [1, 2], BSCF ceramics suffered from insufficient densification and severe cracking; these problems were resolved in this study by optimising the ceramic processing conditions. The phase transition sequences from starting powders to single-phase cubic perovskite were studied by SEM, XRD, TGA, EDS and Raman spectroscopy. The powders prepared by solid-state method were found to require higher calcination temperature to form pure perovskite phase, and an extra intermediate structure (Ba,Sr)Fe_2 O_4 was detected in the reaction sequence. The materials performance was examined from five aspects: thermal stability, chemical stability, oxygen permeability, electronic conductivity and mechanical performance. The secondary phases of thermal/chemical degradation were investigated, and a needle-like intragranular precipitate was originally discovered in this work. It was discovered that the niobium substitution could significantly improve BSCF’s thermal stability and chemical stability. The oxygen permeability and mechanical performance were also improved by niobium when the substitution ratios are small (< 10%). Although the electronic conductivity was lowered by niobium substitution as a trade-off, it does not become a drawback to restrict the materials’ potential applications as mixed ionic-electronic conductors (MIEC).Furthermore, the material system’s “composition - lattice structure - performance” relationships were systematically investigated in this work; the oxygen deficiency value (δ) and the average bond energy (ABE) were found to have strong correlations with the materials performance.
4

Development of electrocatalytic layers and thermo-fluid dynamic evaluation for high temperature membrane reactors

Catalán Martínez, David 20 January 2020 (has links)
[ES] En la presente tesis se han desarrollados estudios sobre reactores de membrana de alta temperatura. Entre estos se puede diferenciar entre un trabajo experimental y un trabajo de simulación. En el bloque experimental se han desarrollado electrodos basados en cobre para reactores de membrana electroquímicos tubulares de alta temperatura basados en electrolitos protónicos. Para depositar estos electrodos sobre los tubos se han desarrollado diferentes técnicas. Se ha optimizado el método dip-coating para depositar un cermet basado en cobre utilizando la misma cerámica que el electrolito de los soportes tubulares. Las condiciones con las que se llevó a cabo el proceso de dip-coating provocan disminuciones de varios ordenes de magnitud en la resistencia de polarización del electrodo final. Se trata de un método que es muy sensible a posibles defectos en electrolito, como pequeñas grietas o poros, ya que el cobre del electrodo depositado se introduce por estos defectos reaccionando con el níquel del electrodo interno. Asimismo, se ha empleado el método de sputtering para depositar cobre metálico sobre soportes tubulares electroquímicos. Aumentar la temperatura de deposición genera mejores fijaciones electrodo-electrolito. Las celdas con el cobre depositado a alta temperatura mostraron resistencias de polarización inferiores a 0.1 ¿·cm^2. En el bloque de simulaciones mediante métodos de elementos finitos se han desarrollado diferentes modelos para la caracterización de los fenómenos que tienen lugar en reactores de membrana de alta temperatura. Se ha estudiado: (i) la permeación de oxígeno a través de una membrana de conducción iónica-electrónica mixta; (ii) la electrólisis del agua utilizando celdas basadas en conductores protónicos de alta temperatura; (iii) la integración de una celda protónica para la extracción de hidrógeno en un reformador de metano; (iv) la integración de una celda de conductividad co-iónica en la deshidroaromatización de metano en un reactor de lecho catalítico. El modelo de permeación de oxígeno a través de una membrana de conductividad mixta se ajustó a datos experimentales. El modelo ajustado ha permitido caracterizar la importancia del efecto dilutivo y de arrastre sobre el transporte de oxígeno a través de la membrana. Se ha observado que, aunque el efecto de arrastre tenga menor importancia que el dilutivo, su efecto es importante ya que previene la formación de concentraciones de polarización. El estudio de electrolizadores que utilizan conductores protónicos sólidos de alta temperatura ha permitido estudiar el efecto del escalado en este proceso y evaluar la eficiencia en el almacenamiento de energía. El modelo de un reactor de membrana electroquímico basado en conductores protónicos integrado en un reformador de metano ha permitido comprobar que la demanda térmica del proceso se cubre por el efecto Joule y la electrocompresión del hidrógeno. Se ha comprobado como el coarsening observado en las partículas de níquel no limita la extracción de hidrógeno para la celda estudiada. Un último modelo fue construido para estudiar un reactor de membrana para el proceso de deshidrogenación de metano utilizando una celda co-iónica. El modelo fue validado utilizando datos experimentales. Se utilizó el modelo validado para realizar estudios para analizar posibles limitaciones del proceso. Finalmente, se ha comprobado que el desplazamiento del equilibrio de reacción mediante la extracción de hidrógeno se frena debido a limitaciones cinéticas. / [CA] Esta tesi presenta resultats sobre reactors de membrana a alta temperatura. Dos blocs diferenciades poden ser identificats: (i) treball experimental; (ii) treball de modelat. En el bloc experimental, elèctrodes basats en coure han siguts optimitzats per a tubular cells de conductor protòniques. La deposició de la capa basada en coure es va fer amb diferents tècniques. La tècnica de dip-coating ha sigut usada per a depositar una capa de cermet basada en coure. Aquesta tècnica es molt sensible a les condicions amb les que es desenvolupa la deposició perquè causa canvis de varis ordres de magnitud en la resistència de polarització del elèctrode. A més, la tècnica de sputtering ha sigut triada per a depositar coure. Per a depositar correctament la capa de coure, altes temperatures durant la deposició foren requerides. El elèctrode optimitzat presenta resistències de polarització inferiors a 0.1 ¿·cm2. En el treball de modelat, la metodologia de elements finits va ser utilitzada per a modelar diferents fenòmens concernits a reactors de membrana de elevada temperatura. La permeació de oxigen per membranes de conducció mixta ha sigut modelada per a avaluar la importància de la dilució i del arrossegament. Els resultats mostren que, encara que el efecte dilutiu es predominant, el efecte del arrossegament no pot ser depreciat. Un adequat arrossegament del oxigen permeat es necessari per evitar polaritzacions en la concentració del oxigen els quals limitarien la permeació. El efecte del arrossegament es major quan el gas portador es mes pesat. El model per estudiar un procés de electròlisis basat en conductors protòniques a elevada temperatura ha permès estudiar l'efecte de l'escalat de aquest procés i avaluar l'eficiència en l'emmagatzemament d'energia. Modelant un reformador de membrana protònica ha permès comprovar la microintegració tèrmica de tots el fenòmens que tenen lloc en aquest procés. Aquest procés compren les reaccions de reformat, extracció electroquímica de hidrogen i electrocompressió del hidrogen generat. La electrocompressió del hidrogen és un procés isoterma que allibera la energia demanda en forma de calor. El model ha permès comprovar que l'engrossiment de les partícules de níquel no limita l'extracció de hidrogen. Un últim model va ser construït per estudiar l'extracció de hidrogen en un reactor de membrana per al procés de dehidroaromatizatió de metà. El reactor de membrana utilitza materials co-iòniques per l'extracció de hidrogen de la càmera de reacció. Aquest model va ser validat amb resultats experimentals. El model va mostrar que no hi ha limitacions amb la difusió del hidrogen. A més, el desplaçament del equilibri mediant l'extracció de hidrogen està limitat per la baixa activitat cinètica del procés. / [EN] In this thesis several studies were developed about membranes reactor at high temperature. Two differentiated blocks could be identified: (i) experimental works; (ii) modelling works. In the experimental block, electrodes based on copper was developed for tubular protonic based cells. The deposition of the copper layer on the tubes was developed by different techniques. Dip-coating method was optimized to a copper-based cermet on the tube. Conditions of the dip-coating procedure has a critical impact in the final performance of the electrochemical cell whose supposes several orders of magnitude in the polarization resistance. It is a sensitive process with the defect of the tube as shows the copper spread over these defects. Additionally, sputtering technique was used to deposit copper layer on the tube. High temperature is required to achieve suitable attachments copper-tube. This high temperature deposited layer present polarization resistances lower than 0.1 ¿·cm2. In the modelling block, finite element methodology was used to build different models to study different phenomena concerning membrane reactors at high temperature. It was studied: (i) the oxygen permeation across a mixed ionic and electronic conducting membrane; (ii) water electrolysis based on high temperature protonic cells; (iii) hydrogen extraction from a steam methane reforming using a protonic cell; (iv) the intensification of the methane dehydromatization reactor using co-ionic membrane. Oxygen permeation model was built to evaluate the effect of the dilutive and the sweep contribution over the permeation process. The fitted model allowed the importance of the dilutive and sweep effect over the oxygen permeation. Although the sweep effect present lower influence in the oxygen transport across the membrane, its effect prevents concentration polarization limitations. Modelling the protonic cell based electrolysis allowed to study the effect of the scale up in this process and to evaluate the efficiency in the energy storing in form of hydrogen. Modelling protonic membrane reformer allowed checking the thermal microintegration of all the heats which take place in the setup. The electrocompression of hydrogen is an isothermal phenomenon which releases the demanded energy as heat. The model allowed to check the coarsening of the Ni particles does not limit the hydrogen extraction for the studied cell. A final model was built to study a catalytic membrane reactor for the methane dehydroaromatization using co-ionic conducting cells. The model was validated using experimental data. Additionally, different studies were performed to analyze possible limitation in the process. Results show that there are no hydrogen diffusion limitations in this process. Additionally, the shift of the equilibrium by extracting hydrogen has to be stopped because kinetic limitations. / Catalán Martínez, D. (2019). Development of electrocatalytic layers and thermo-fluid dynamic evaluation for high temperature membrane reactors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/135278
5

DEVELOPMENT OF CERAMIC MIEC MEMBRANES FOR OXYGEN SEPARATION: APPLICATION IN CATALYTIC INDUSTRIAL PROCESSES

García Fayos, Julio 01 September 2017 (has links)
The present Thesis is focused on the development of ceramic membranes for the production of O2, as well as their use in several industrial applications (e.g. power generation, chemical industry). Different materials such as perovskites (BSCF and LSCF), fluorites (CGO) and composites, different membrane architectures have been considered. Catalytic activation was considered for the optimization of permeation, and for improving the selectivity/yield of chemical reactions. In the chapter dedicated to BSCF, the influence of thickness and the use of porous supports in the permeation was studied. An improvement in the permeation was observed for the thinner membranes. With respect to the porous supports, it was found that they contribute with an additional resistance within the permeation process, reducing the potential improvement when reducing thickness. The conducted tests also allowed to study more in deep the different processes affecting oxygen membranes, as well as defining a permeation model for monolithic and asymmetric membranes. Aiming to improve the surface reactions involved in the oxygen permeation the use of catalytic layers was considered, by means the addition of porous BSCF backbones. The best results were obtained when coating both sides of membranes with catalytic layers. The concept of BSCF activated membranes was also considered for the production of C2H4 by means of the oxidative de-hydrogenation of C2H6, obtaining high C2H4 yields. BSCF membranes presenting tubular geometry were characterized for application such as production of O2 and production of C2H4 by means of oxidative coupling of CH4. LSCF was considered for conducting studies under CO2-containing atmospheres. For both systems it was conducted a complete permeation study with a focus on permeation performance under CO2 environments. Furthermore a study focused on the different substrates was carried out for determining the structure presenting the lower gas diffusion resistance. Despite very good results were obtained for both membrane types, even under CO2 conditions, freeze casted membranes reached higher oxygen fluxes, being optimized with the catalytic activation of membranes. Materials presenting fluorite structure stand out for their stability under reaction conditions or when exposed to CO2 environments. Nevertheless, delivered oxygen fluxes are typically low. Hence, a thin 40 micron-thick CGO-Co membrane activated with Pd nanoparticles was considered for conducting a study on O2 permeation performance, and its behaviour when exposed to CO2 and CH4-containing atmospheres. A good stability was demonstrated, as well as a significant improvement in oxygen permeation when exposed to CH4 environments. Thus, CGO membranes present promising properties for their application in oxyfuel and for the conduction of chemical reactions. Composite materials based on NFO-CTO was carried out. An evaluation of the CTO content and its relation with permeation was conducted, determining that a higher ionic phase ratio in the membrane results in a higher permeation. A composite consisting of 50NFO-50CTO was considered for performing a permeation study under harsh application conditions, with presence of SO2. Despite the significant loss in permeation, the composite material resulted to be stable after a long exposure to SO2. A broad study about the effect of CO2 and SO2 on the oxygen surface reactions was conducted by means of EIS measurements on 60NFO-40CTO electrodes. It was observed a significant effect of SO2 on the surface exchange reactions by promoting the deactivation of the O2 active sites, due to a SO2 adsorption on them. This effect was minimized by activating 60NFO-40CTO backbones with different catalysts, being characterized by EIS under CO2&SO2 conditions. This improvement was later confirmed when performing permeation tests. Permeation was improved notably by reducing membrane thickness, depositing composite membranes on LSCF porous substrates. / La presente tesis trata sobre el desarrollo de membranas cerámicas para la producción de O2, así como de su uso en distintas aplicaciones industriales (producción de energía, industria química). Se han considerado distintos tipos de materiales tales como perovskitas (BSCF y LSCF), fluoritas (CGO) y materiales composites, así como distintas arquitecturas de membrana. y activación catalítica para optimizar la permeación y la selectividad/rendimiento en reacciones químicas. Para el BSCF se estudió la influencia del espesor y el uso de soportes porosos en la permeación de O2, con una mejora para las membranas más finas, y también el papel de los soportes porosos, contribuyendo con una resistencia adicional en el proceso de permeación. El estudio permitió también conocer más en profundidad los procesos que afectan a los distintos tipos de membranas, y establecer un modelo de permeación para membranas. Se recurrió a la activación catalítica mediante la adición de capas porosas de BSCF, obteniendo así mejores resultados para las membranas con capas en ambos lados. El concepto de membranas de BSCF activadas superficialmente se consideró también para la producción de C2H4 a partir de la deshidrogenación oxidativa de etano (ODHE), obteniendo rendimientos de C2H4 muy elevados. Membranas de BSCF con geometría tubular fueron caracterizadas para aplicaciones de producción de O2 y C2H4 mediante acoplamiento oxidativo de metano (OCM). Se consideró al LSCF para su uso en aplicaciones con atmósferas conteniendo CO2. Se desarrollaron membranas soportadas en soportes porosos de LSCF mediante tape casting y freeze-casting, realizando completos estudios de permeación, además de estudiar el tipo de soporte poroso ofreciendo menos resistencia a la difusión de los gases. Pese que para ambos tipos de membranas se obtuvieron muy buenos flujos de oxígeno, incluso bajo condiciones de CO2, para el caso de membranas con soporte fabricado mediante freeze-casting se consiguieron mayores valores de permeación, optimizándolos incluso con la activación catalítica. Los materiales con estructura fluorita poseen alta estabilidad bajo condiciones de reacción (atmósferas reductoras) o cuando son expuestos a CO2 (aplicaciones de producción de energía). Sin embargo, los valores de permeación suelen ser muy bajos. Se consideró una membrana de CGO-Co de 40 micras de espesor activada con nanopartículas de Pd para llevar a cabo un estudio de sus propiedades para la producción de O2, su comportamiento en contacto con CO2 y con atmósferas conteniendo CH4. La buena estabilidad demostrada y la mejora sustancial de los flujos de O2 bajo ambientes reductores, hacen que este tipo de materiales posean propiedades prometedoras para aplicaciones de oxicombustión y reacciones químicas. Se realizó un estudio con materiales composites formados por NFO-CTO. Una evaluación del contenido en CTO y su relación con la permeación de O2, resultó en mayores valores para composiciones con mayor contenido en CTO. Un composite consistente en 50NFO-50CTO se consideró para la realización de tests bajo condiciones de oxicombustión, con presencia de SO2. Pese al notable descenso en los flujos de O2, el material resultó ser completamente estable tras una exposición continuada al SO2. Un amplio estudio del efecto del CO2 y del SO2 sobre las reacciones superficiales se realizó mediantes medidas de EIS en electrodos de 60NFO-40CTO, demostrando que el SO2 afecta significativamente a las reacciones superficiales mediante procesos de adsorción competitiva en los centros activos. Se minimizó el efecto del SO2 sobre las reacciones de intercambio superficial al activar las membranas con capas catalíticas porosas de 60NFO-40CTO con distintos catalizadores, confirmando posteriormente esta mejora en tests de permeación en las mismas condiciones. Así mismo, se optimizó notablemente la permeación de las membranas de 60NFO-40CTO reduciendo el espes / La present tesi tracta sobre el desenvolupament de membranes ceràmiques per a la producció d'O2, així com del seu ús en diverses aplicacions industrials (producció d'energia, indústria química). S'han considerat diversos materials tals com perovskites (BSCF i LSCF), fluorites (CGO) i materials composites, així com diferents arquitectures de membrana i l'activació catalítica per a millorar la permeació i la sel·lectivitat/rendiment de les reaccions químiques. Per al BSCF s'estudià la influència de l'espessor i l'ús de suports porosos en la permeació d'O2, amb una millora dels fluxos d'O2 per al cas de les membranes més fines, i també el paper dels suports porosos, els quals contribueixen afegint una resistència al procés de permeació. L'estudi també va permetre conèixer més en profunditat els processos que afecten als diferents tipus de membranes, i establir un model de permeació per a membranes. Es va recórrer a l'activació catalítica mitjançant l'adició de capes poroses de BSCF, obtenint així millors resultats per a les membranes activades a ambdós costats. El concepte de membranes de BSCF activades superficialment es va considerar també per a la producció d'etilè a mitjançant la deshidrogenació oxidativa d'età (ODHE), obtenint rendiments de C2H4 molt elevats. Membranes de BSCF amb geometria tubular van ser caracteritzades per a aplicacions de producció d'O2 i C2H4 mitjançant l'acoplament oxidatiu de metà (OCM). Es va considerar al LSCF per al seu ús en aplicacions amb atmosferes contenint CO2. Així doncs, es van desenvolupar membranes suportades sobre suports porosos de LSCF fabricats per tape càsting i freeze càsting. Es van realitzar estudis complets de permeació per a ambdós casos, a més d'estudiar el tipus de suport porós que ofereix una menor resistència a la difusió dels gasos. Malgrat que es van obtindré molts bons fluxos d'O2 per als dos tipus de membranes, inclús sota condicions amb CO2, per al cas de les membranes amb suport fabricat per freeze càsting es van aconseguir majors valors de permeació, sent inclús optimitzats amb l'activació catalítica. Els materials amb estructura fluorita destaquen per l'alta estabilitat sota condicions de reacció (atmosferes reductores) o quan són exposats a CO2 (aplicacions per a la producció d'energia). Malgrat això, els valors de permeació solen ser molt baixos. Es va considerar una membrana de CGO-Co de 40 micras d'espessor activada amb partícules de Pd per a realitzar un estudi sobre les seues propietats en quant a la producció d'O2, el seu comportament amb el contacte amb CO2 i atmosferes reductores contenint CH4. La bona estabilitat demostrada i una millora substancial dels fluxos d'O2 sota ambients reductors fan que aquest tipus de material presente propietats prometedores per a aplicacions d'oxicombustió i reaccions químiques. Es va realitzar un estudi sobre materials composites formats per NFO-CTO. Es va realitzar una avaluació del contingut en CTO i la relació amb la permeació, observant una millora de la permeació amb un major contingut de CTO. Un composite consistent en 50NFO-40CTO es va considerar per a la realització de tests de permeació en condicions d'oxicombustió amb presència de SO2. Malgrat el notable descens en els fluxos d'O2, el material resultà ser estable després d'una exposició continuada al SO2. Es mesurà l'efecte del CO2 i del SO2 sobre les reaccions superficials fent ús de la tècnica d'EIS en elèctrodes de 60NFO-40CTO. Demostrant que el SO2 afecta significativament a les reaccions superficials degut a una adsorció competitiva O2-SO2 als centres actius. Es minimitzà l'efecte del SO2 sobre les reaccions superficials al activar les membranes amb capes poroses de 60NFO-40CTO amb diferents catalitzadors. Aquestes capes van ser caracteritzades per EIS sota condicions de SO2, confirmant posteriorment la millora al realitzar tests de permeació. S'optimitzà notablement la perme / García Fayos, J. (2017). DEVELOPMENT OF CERAMIC MIEC MEMBRANES FOR OXYGEN SEPARATION: APPLICATION IN CATALYTIC INDUSTRIAL PROCESSES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86189 / Premios Extraordinarios de tesis doctorales

Page generated in 0.0797 seconds