1 |
Multipole NMR studies : Dynamics of some spin-3/2 systemsOsment, P. A. January 1987 (has links)
No description available.
|
2 |
Mecanismos de relaxação spin-nuclear-rede em CaF2:U3+. / Nuclear-spin-lattice relaxation mechanics for CaF2:U3+.Delben, José Renato Jurkevicz 20 October 1983 (has links)
Neste trabalho descreve-se a construção de dois equipamentos controladores da temperatura da amostra, que operam entre 77K e 300K e entre 300K e 700K. Apresenta-se os resultados de medidas de T1 e T2, no intervalo de 77K e 700K, realizadas com o campo estático Ho paralelo à direção [111] e uma radiofreqüência de 24MHz. Discutem-se os comportamentos de T1 e T2 neste intervalo de temperaturas e os possíveis mecanismos de relaxação, spin nu clear-rede e spin eletrônico de impureza-rede, atuantes. / In this work we describe the construction of two sample temperature controlled equipments that operate between 77K and 300K and between 300K and 700K. We show the results of T1 and T2 measurements over the temperature range of 77K to 700K with the static field Ho parallel to [111] direction and 24MHz. We discuss the T1 and T2 behavior in this range temperature and the possible relaxation mechanisms of spin nuclear and spin electronic of impurity to lattice that are present.
|
3 |
Mecanismos de relaxação spin-nuclear-rede em CaF2:U3+. / Nuclear-spin-lattice relaxation mechanics for CaF2:U3+.José Renato Jurkevicz Delben 20 October 1983 (has links)
Neste trabalho descreve-se a construção de dois equipamentos controladores da temperatura da amostra, que operam entre 77K e 300K e entre 300K e 700K. Apresenta-se os resultados de medidas de T1 e T2, no intervalo de 77K e 700K, realizadas com o campo estático Ho paralelo à direção [111] e uma radiofreqüência de 24MHz. Discutem-se os comportamentos de T1 e T2 neste intervalo de temperaturas e os possíveis mecanismos de relaxação, spin nu clear-rede e spin eletrônico de impureza-rede, atuantes. / In this work we describe the construction of two sample temperature controlled equipments that operate between 77K and 300K and between 300K and 700K. We show the results of T1 and T2 measurements over the temperature range of 77K to 700K with the static field Ho parallel to [111] direction and 24MHz. We discuss the T1 and T2 behavior in this range temperature and the possible relaxation mechanisms of spin nuclear and spin electronic of impurity to lattice that are present.
|
4 |
Control of The Phase Transition Behavior and Ionic Conductivity of Silver Iodide Nanoparticles by Size, Pressure and Anion Mixing / サイズ、圧力、陰イオン混合によるヨウ化銀ナノ粒子の相転移挙動とイオン伝導性の制御Yamamoto, Takayuki 23 May 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20551号 / 理博第4309号 / 新制||理||1619(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 北川 宏, 教授 竹腰 清乃理, 教授 吉村 一良 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
5 |
NOVEL SOLID-STATE ELECTROLYTES WITH IMPROVED ELECTRONIC PROPERTIES AS HYBRID IONICALLY CONDUCTING BATTERY MATERIALSVan Vliet, Megan, 0000-0003-1024-4191 January 2021 (has links)
As global energy consumption moves away from fossil fuel sources to alternative energy, the concern for energy storage is paramount. Through lithium ion batteries (LIBs), secondary battery storage has been secured for both large applications of electric vehicles, solar storage, and smaller items like personal cell phones and laptops. However, LIBs use flammable liquid electrolytes and due to engineering defects or dendritic short-circuits have the potential to swell, catch on fire, or even explode because of the volatile organic solvents within the battery. In the pursuit of new commercial lithium ion battery technologies that are safe, nonflammable, and highly conductive, solid-state electrolytes (SSE) are promising candidates for these critical innovations. To achieve SSEs with electrochemically and functionally desirable properties such as ease of manufacturing, good adherence to electrodes, and high ionic conductivities, continued efforts are devoted to improving electrolyte materials. The two main electrolyte types of interest are polymer electrolytes and ceramic electrolytes. Although polymer electrolytes have desirable physical flexibility to form good contact with electrode surfaces, they continually suffer from low ionic conductivities comparatively. Meanwhile ceramic electrolytes have high ionic conductivities (especially high cationic conductivities) but suffer from both poor electrode contact and brittleness. Single-ion conductive materials (like most ceramic conductors) are necessary to increase lifetime performance of batteries. An avenue to access these necessary attributes in LIB-SSEs is explored through novel boron-containing polymers and polymer-ceramic hybrids with the focus to synthesize a material with a high lithium transference number.
By exploiting the Lewis basic nature of borane centers to form negatively charged polymer backbones, novel solid-state electrolytes were synthesized with the goal of creating only cation-conductive polymer networks by incorporating the anionic component within the polymer matrix. The synthesis, chemical and electrochemical characterization of these types of polymers and polymer-ceramic hybrids are analyzed by various techniques including x-ray diffraction, thermal gravimetric analysis, nuclear magnetic spectroscopy, gel permeation chromatography, electrochemical impedance spectroscopy and lithium transference number characterization. / Chemistry
|
6 |
Ultra-thin solid oxide fuel cells: materials and devicesKerman, Kian 06 June 2014 (has links)
Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 - 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 - 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide alloys and nanoscale compositionally graded membranes that are thermomechanically robust and provide added interfacial functionality. The work in this thesis advances experimental state-of-the-art with respect to solid oxide fuel cell operation temperature, provides fundamental boundaries expected for ultrathin electrolytes, develops the ability to integrate highly dissimilar material (such as oxide-polymer) heterostructures, and introduces nanoscale compositionally graded electrolyte membranes that can lead to monolithic materials having multiple functionalities. / Engineering and Applied Sciences
|
7 |
Charge Transport Studies of Proton and Ion Conducting MaterialsVersek, Craig William 01 May 2013 (has links)
The development of a high-throughput impedance spectroscopy instrumentation platform for conductivity characterization of ion transport materials is outlined. Collaborative studies using this system are summarized. Charge conduction mechanisms and conductivity data for small molecule proton conducting liquids, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, and select mixtures of these compounds are documented. Furthermore, proton diffusivity measurements using a Pulse Field Gradient Nuclear Magnetic Resonance (PFG NMR) technique for imidazole and 1,2,3-triazole binary mixtures are compared. Studies of azole functionalized discotic and linear mesogens with conductivity, structural, and thermal characterizations are detailed.
|
8 |
Ionic Conducting Ceramic Membrane Reactor for Partial Oxidation of Light HydrocarbonsAkin, Figen Tulin 21 May 2002 (has links)
No description available.
|
9 |
La2NiO4+d, un conducteur mixte ionique-électronique pour les mémoires à changement de Valence / La2NiO4+d, a Mixed Ionic-Electronic Conductor for Interface-Type Valence Change MemoriesMaas, Klaasjan 14 March 2019 (has links)
Cette thèse porte sur la compréhension et le développement de matériaux innovants en tant que composant actif pour les mémoires résistives à changement de valence (VCM), qui constitue une sous-catégorie des mémoires résistives où des réactions d’oxydoréduction sont à l’origine du mécanisme de commutation résistive. Leur incorporation dans les circuits intégrés nécessite une tension (ou un courant) électrique pour lire et programmer la mémoire, cependant leurs fonctionnalités dépend essentiellement des propriétés chimiques des matériaux constituant la mémoire. Dans ce manuscrit nous étudions les propriétés du composé La2NiO4+δ, un conducteur mixte d’ions et d’électrons qui de par sa conduction d’ions oxydes dans le volume du matériau offre un terrain de jeu prometteur pour les VCMs. Nous avons pu obtenir des films minces de La2NiO4+δ fortement texturés sur des substrats monocristallins de SrTiO3 par dépôt chimique en phase vapeur à partir de l’injection pulsée de précurseurs métalorganiques (PiMOCVD). Des recuits sous atmosphère contrôlée ont permis de faire varier le contenu en oxygène et d’ajuster les propriétés semiconductrices-type p de La2NiO4+δ par un mécanisme d’auto-dopage. Une sur-stœchiométrie en oxygène dans la plage 0 ≤ δ ≤ 0.08 induit une variation de résistivité de 5.7 Ω.cm à 5.3x10-3 Ω.cm pour un recuit sous hydrogène ou sous oxygène, respectivement. Les films minces de La2NiO4+δ ont ensuite été utilisés comme base dans la conception d’hétérostructures métal/La2NiO4+δ/métal. Le rôle important de la jonction métal/oxyde sur les propriétés des VCMs de type interfaciales est discuté en détails. En particulier, un contact ohmique avec La2NiO4+δ est obtenu en utilisant un matériau d’électrode tel que le Pt ayant un travail de sortie élevé, alors qu’un contact rectifiant est obtenu avec Ti résultant de la présence d’une fine couche (~8 nm) de TiOx formée de manière spontanée à l’interface Ti/La2NiO4+δ. Une hétérojunction asymétrique Pt/La2NiO4+δ/Ti a été sélectionnée comme prototype afin d’évaluer les propriétés memristives de composants basés sur La2NiO4+δ. Un changement de résistance bipolaire a été mesuré ainsi qu’une possibilité de programmation largement multi-niveaux lorsque la mémoire est stimulée de manière pulsée. Les résultats prometteurs obtenus par ce premier prototype sont ensuite étendus pour la première fois à un système plus complexe de bicouches La2NiO4+δ/LaNiO3. Des propriétés de relaxation ont été mesurées, rendant ces mémoires intéressantes pour leur utilisation en tant que mémoire volatile pour un filtrage dynamique dans des applications neuromorphiques. / This thesis is focused on the understanding and development of novel materials for valence-change memories (VCMs), a type of resistive switching memories in which the memory storage mechanism is based on internal redox reactions. VCMs are in essence electrochemical systems. Their implementation in integrated electronic circuits relies on a voltage (or current) to measure and operate the memory, but their functionality is highly dependent on the chemical properties of the materials constituting the memory. In this work we present how the mixed ionic-electronic conducting La2NiO4+δ compound offers an interesting playground for VCM applications due to its intrinsic bulk oxygen-ion conducting properties. We have successfully prepared La2NiO4+δ in the form of highly oriented thin films on SrTiO3 single crystal substrates using pulsed-injection chemical vapour deposition (PiMOCVD). Post-annealing treatments in oxidizing/reducing atmospheres allow tuning the oxygen content and the p-type semiconducting properties of La2NiO4+δ due to a self-doping mechanism. The obtained oxygen over-stoichiometry in the 0 ≤ δ ≤ 0.08 range induced a variation of the film resistivity between 5.7 Ω.cm and 5.3x10-3 Ω.cm for hydrogen or oxygen-annealed samples, respectively. The optimized La2NiO4+δ thin films have been used as a base for the microfabrication of metal/La2NiO4+δ/metal heterostructures. The important role of the metal/oxide junction in interface-type VCMs is discussed in detail. In particular, an ohmic contact is obtained with La2NiO4+δ when using a high work function metal such as Pt, while rectifying contact properties are obtained when using Ti due to the presence of a spontaneously-formed TiOx interlayer (~8 nm) at the Ti/L2NO4 interface. An asymmetric Pt/La2NiO4+δ/Ti heterojunction has been selected as a first prototype to assess the memory capabilities of a La2NiO4+δ-based memristive device. A continuous bipolar analogue-type memory behaviour has been measured, together with strong multilevel programing capabilities when operated in pulsed mode. In addition, the promising results offered by this prototypical device have been extended for the first time to La2NiO4+δ/LaNiO3 bilayers, showing memory relaxation properties, which are potentially interesting for short-term memory and filtering applications in neuromorphic-based computational hardware.
|
10 |
Nouveau procédé d’élimination des particules émises par les moteurs Diesel / New process to reduce Diesel particles emissionMazri, Linda 16 February 2011 (has links)
L’objectif de cette étude était de développer une nouvelle génération de catalyseurs, dits électrochimiques, capables d’abaisser la température de régénération des filtres à particules, et de diminuer les coûts du post-traitement des moteurs Diesel, en évitant notamment une surconsommation en carburant. Pour cela, un banc de mesure a été développé où de forts moyens analytiques pour les phases gazeuses (GC et analyseur de NOx), particulaires (spectromètre de masse à aérosols AMS) et de caractérisations physiques des aérosols (SMPS, Scanning Mobility Particle Sizer) ont été couplés. Le catalyseur électrochimique développé est composé d’un catalyseur oxyde de type pérovskite La0.5Sr0.23Ag0.27MnO3±δ (noté LSAM), en contact avec un électrolyte solide conducteur par les ions O2-, la zircone dopée à l’oxyde d’yttrium (YSZ). L’enduction de ce catalyseur électrochimique directement dans les canaux d’un filtre à particule (FAP) en céramique (SiC) a montré des performances permettant d’abaisser la température de régénération des FAP de 100°C voire de 260°C selon le flux de régénération. Ces performances sont le résultat d’un effet de synergie entre les phases de la pérovskite LSAM et du conducteur ionique YSZ / The aim of this study was to develop a new generation of catalysts, called electrochemical, which can lower the regeneration temperature of the particulate filter, and reduce post-treatment costs of Diesel engines, especially avoiding over-consumption of fuel. For this, a test bench has been developed where strong analytical analyzer for gas phases (GC and Nox analyzer), for particles (aerosol mass spectrometer AMS) and for physical characterization of aerosols (SMPS, Scanning Mobility Particle Sizer) have been coupled. The electrochemical catalyst developed is composed of a perovskite catalyst La0.5Sr0.23Ag0.27MnO3±δ (denoted LSAM), in contact with a solid electrolyte conductor by O2-ions, yttria stabilised zirconia (YSZ). The coating of the electrochemical catalyst directly into the channels of a particulate filter (DPF) showed performance to lower the DPF regeneration temperature of 100°C or even 260°C depending of the regeneration flow. These performances are the result of a synergistic effect between the phases of the perovskite LSAM and YSZ ionic conductor
|
Page generated in 0.065 seconds