• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The overall oxygen transfer coefficient and interfacial area in hydrocarbon-based bioprocesses

Hollis, Peter Graham 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Bioconversion of hydrocarbons to value-added intermediates and products has significant industrial potential using both prokaryotic and eukaryotic organisms. In particular, alkanes can be converted to an expansive range of commercially important products using aerobic bioprocesses under mild process conditions. Coupled with the relative abundance of alkanes derived from gas to liquid (GTL) technologies, such as those employed by SASOL, South Africa, the commercial potential for bioconverison of alkanes is large. However, unlike carbohydrate substrates, alkane feedstocks are devoid of oxygen in their molecular structure. This means that the entire oxygen demand needs to be met by oxygen transfer. Furthermore, a decline in oxygen transfer in aqueous-hydrocarbon dispersions with increasing alkane concentration has been observed to result from depression of the overall volumetric oxygen transfer coefficient (KLa). Therefore, understanding KLa and the fundamental parameters underpinning its behaviour is critical to ensuring the bioprocess is kinetically, rather than transport, limited in terms of both operation and scale-up. Previous studies have examined KLa in aerated-alkane-aqueous systems. In light of the importance of oxygen transfer in bioprocesses, this study expands on the KLa understanding in 3-phase studies by including a fourth solid phase, thus more closely representing a hydrocarbonbased bioprocess. The project aimed to determine the impact of agitation, alkane concentration and solid loading on the Sauter mean bubble diameter (DSM), gas hold-up and specific interfacial area (a) and correlate these parameters to KLa. This ultimately determined which parameter was dominant over a range of process conditions. Furthermore, concurrent measurement of the KLa and interfacial area meant the behaviour of the liquid side oxygen transfer coefficient (KL) could be defined, providing further insight into how changes in the process conditions impact on KLa. Experiments were conducted in a 5 litre stirred tank bioreactor containing n-C14-20 straight chain alkane, sparged with air at 0.8 vvm. In line with process conditions typical of a hydrocarbonbased bioprocess, KLa and a were measured for agitation rates from 450 to 1000 RPM, alkane concentrations from 2 to 20% v/v and yeast solids from 1 to 10 g/l. KLa was measured using the gassing out procedure using a dissolved oxygen (DO) probe which measured the response of the system to a step change in the sparge gas oxygen pressure. The probe response lag ( P), equal to the time taken for the probe to reach 63.2% of the saturation DO concentration, was determined for every set of process conditions. The inverse of P, KP was taken into account when calculating KLa from the DO probe response. The area was calculated from DSM and gas hold-up. DSM was quantified using high speed photography and image analysis was performed in Matlab® using bespoke routines. Elimination of optical distortion and the development of an adequate light source was key to acquiring clear images. Both KLa and interfacial area were found to be affected by changes in agitation, alkane concentration and yeast loading. An increase in agitation increased the KLa over the entire range of alkane concentration and yeast loading. Similarly, an increase in agitation resulted in an increase in interfacial area, underpinned by a decrease in the DSM. It is therefore likely that the interfacial area plays a dominant role in defining KLa when considering an increase in agitation. Increases in alkane concentration resulted in a peak in KLa between 2.5 and 5% alkane concentration while further increases in alkane concentration depressed KLa. This peak was not observed in interfacial area, where an increase in alkane concentration resulted only in a decrease in interfacial area, thus indicating a positive influence of KL on KLa at low alkane concentrations. Further increases in alkane concentration beyond those creating the peak KLa resulted in KLa depression, suggesting that the increasing viscosity imparted by the alkane decreases both KL and interfacial area. Increased yeast loading had opposing effects at low and high agitation rates. At low agitation rates, increased loadings were observed to increase KLa, while increased loadings at high agitation rates caused a decrease in KLa. This behaviour was also evident in interfacial area, suggesting that in this regime KLa was defined by interfacial area behaviour. Increased yeast loading was observed to depress the KLa for all alkane concentrations when examined at a constant midpoint agitation rate. This trend was not evident in interfacial area, which increased with increasing yeast loading at the same agitation rate. The positive influence of yeast on interfacial area was likely caused by adhesion of the yeast particles to the bubble surface, lowering the DSM by preventing coalescence. The disagreement between the KLa and interfacial area results suggested that yeast loading impacted negatively on KL, which had an over-riding negative impact on KLa. The use of reliable methods for the determination of both interfacial area and KLa were demonstrated for application in model hydrocarbon-based bioprocesses. The combined results offer a unique insight into how changes in the process conditions impact independently on KL and interfacial area, which when combined ultimately defined the KLa behaviour. Quantification of the relative magnitude of the impact each parameter had on KLa contributed toward a fundamental understanding of oxygen transfer in model hydrocarbon-based bioprocesses. / AFRIKAANSE OPSOMMING: Biologiese omsetting van koolwaterstowwe na produkte met finansiële waarde het beduidende industriële potensiaal met behulp van beide prokariotiese en eukariotiese organismes. In die besonder, kan alkane omgeskakel word na ’n uitgebreide reeks van kommersieel belangrike produkte met behulp van aerobiese bioprosesse onder ligte proses voorwaardes. Tesame met die relatiewe oorvloed van alkane afgelei van GTL tegnologie, soos dié van Sasol, Suid-Afrika, die kommersiële potensiaal vir bioconverison van alkane is groot. Maar, in teenstelling koolhidrate substrate, alkaan voerstowwe is beroof van suurstof in hul molekulêre struktuur. Dit beteken dat die hele suurstof vereiste moet nagekom word deur suurstof oordrag. Verder het ’n afname in suurstof oordrag in waterige-koolwaterstof dispersies met toenemende alkaan konsentrasie waargeneem te lei van depressie van die algehele volumetriese suurstofoordragkoëffisiënt (KLa). Daarom verstaan KLa en die fundamentele parameters onderliggend sy gedrag is van kritieke belang om te verseker dat die bioprocess is kineties, eerder as vervoer, beperk in terme van beide werking en skaal-up van bioprosesse. Vorige studies het KLa in deurlug-alkaan-waterige stelsels ondersoek. In die lig van die belangrikheid van suurstof oordrag in bioprosesse hierdie studie brei uit op die KLa begrip in driefase studies deur die insluiting van ’n vierde soliede fase, dus meer nou wat ’n koolwaterstofgebaseerde bioprocess. Die doel van die projek is om die impak van vermengingstempo, alkaan konsentrasie en soliede inhout op die Sauter gemiddelde borrel deursnee (DSM), gas-vasvanging en spesifieke gas-vloistof oppervlakarea (a) te kwantifiseer en korreleer met KLa gedrag. Dit sou defineer die dominante parameter oor ’n verskeidenheid van proses voorwaardes. Verder, gelyktydige meting van die KLa en oppervlakarea kan die gedrag van die vloeistof-kant suurstofoordragkoëffisiënt (KL) gedefinieer. Dit sal verskaf verdere insig in hoe die veranderinge in die proses voorwaardes impak op KLa. Eksperimente was uitgevoer in ’n 5 liter belugte geroerde tenk bioreaktor bevat n - C14-20 reguitketting alkane, met lug met lug deurgeborrel by 0.8 VVM. In lyn met die proses voorwaardes tipies van ’n koolwaterstof-gebaseerde bioprocess, KLa en a was gemeet vir vermengignstempos van 450-1000 RPM, alkaan konsentrasies van 2-20 % v/v en gis vastestowwe van 1 tot 10 g / l. KLa is gemeet deur die vergassinguit prosedure met behulp van ’n suurstofmeter wat die reaksie van die stelsel na ’n stap verandering in die voer gas suurstof druk gemeet het. Die suurstofmeter reaksie vertraging ( P), gelyk aan die tyd wat dit neem vir die suurstofmeter 63.2 % van die versadiging DO konsentrasie te bereik, is bepaal vir elke procesopset. Die inverse van P, KP is in ag geneem by die berekening van KLa uit die suurstofmeter reaksie. Die gas-vloistof oppervlak is bereken vanaf DSM en gas hold-up. DSM is gekwantifiseer met behulp van hoë spoed fotografie en beeld analise is uitgevoer in Matlab ® roetines. Uitskakeling van optiese vervorming en die ontwikkeling van ’n voldoende ligbron was die sleutel tot die verkryging van helder beelde. Beide KLa en grens oppervlakarea gevind geraak word deur veranderinge in vermengignstempo, alkaan konsentrasie en gis laai. ’N toename in geroer het die KLa verbeter oor die hele reeks van alkaan konsentrasie en gis laai. Net so, ’n toename in geroer het gelei tot ’n toename in grens oppervlak, ondersteun deur ’n afname in die DSM. Dit is dus waarskynlik dat die grens oppervlak speel ’n dominante rol in die definisie van KLa by die oorweging van ’n toename in roering. Stygings in alkaan konsentrasie gelei tot ’n hoogtepunt in KLa tussen 2.5 en 5 % alkaan konsentrasie terwyl verdere verhogings in alkaan konsentrasie druk die KLa af. Die piek was nie in oppervlakarea duidelik, waar ’n toename in alkaan konsentrasie gelei net tot ’n afname in oppervlakarea, dus dui op ’n positiewe invloed van KL op KLa teen lae alkaan konsentrasies waargeneem. Verdere stygings in alkaan konsentrasie verder as die skep van die piek KLa gelei tot KLa depressie, wat daarop dui dat die toenemende viskositeit meegedeel deur die alkaan verminder beide KL en grens oppervlak. Verhoogde gis laai het opponerende effekte teen ’n lae en hoë vermengingstempo. By lae vermengingstempo, ’n verhoging in gis laai waargeneem KLa te verhoog, terwyl ’n verhoging in gis laai op ’n hoë vermengingstempo veroorsaak ’n afname in KLa . Hierdie gedrag was ook duidelik in grens oppervlak, wat daarop dui dat daar in hierdie regime KLa gedefinieer deur grens oppervlak gedrag. Verhoogde gis laai waargeneem die KLa te onderdruk vir alle alkaan konsentrasies wanneer ondersoek teen ’n konstante middelpunt vermengingstempo. Hierdie tendens was nie duidelik in tussenvlak gebied, wat verhoog met toenemende gis laai op dieselfde geroer koers. Die positiewe invloed van gis op grens oppervlak is waarskynlik veroorsaak deur adhesie van die gis deeltjies aan die borrel oppervlak, die verlaging van die DSM deur die voorkoming van die saamsmelting van gasborrels. Die meningsverskil tussen die KLa en grens oppervlakarea resultate voorgestel dat gis laai negatiewe uitwerking op KL, met ’n dominante negatiewe impak op KLa. Die gebruik van ’n betroubare metodes vir die bepaling van beide oppervlakarea en KLa gedemonstreer vir toepassing in model koolwaterstof-gebaseerde bioprosesse. Die gekombineerde resultate bied ’n unieke insig in hoe die veranderinge in die proses voorwaardes impak onafhanklik op KL en oppervlakarea, wat wanneer gekombineer gedefinieer die KLa gedrag. Kwantifisering van die relatiewe grootte van die impak elke parameter het op KLa bygedra tot ’n fundamentele begrip van suurstof oordrag in model koolwaterstof-gebaseerde bioprosesse.
2

Oxygen transfer in a model hydrocarbon bioprocess in a bubble column reactor

Cloete, Jannean Christelle 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The expansion of the global fuels industry has caused an increase in the quantity of hydrocarbons produced as a by-product of refinery gas-to-liquid processes. Conversion of hydrocarbons to higher value products is possible using bioprocesses, which are sustainable and environmentally benign. Due to the deficiency of oxygen in the alkane molecule, the supply of sufficient oxygen through aeration is a major obstacle for the optimization of hydrocarbon bioprocesses. While the oxygen solubility is increased in the presence of hydrocarbons, under certain process conditions, the enhanced solubility is outweighed by an increase in viscosity, causing a depression in overall volumetric oxygen transfer coefficient (KLa). The rate at which oxygen is transferred is defined in terms of a concentration driving force (oxygen solubility) and the overall volumetric oxygen transfer coefficient (KLa). The KLa term comprises an oxygen transfer coefficient (KL) and the gas-liquid interfacial area (a), which are dependent on the uid properties and system hydrodynamics. This behaviour is not well understood for hydrocarbon bioprocesses and in a bubble column reactor (BCR). To provide an understanding of oxygen transfer behaviour, a model hydrocarbon bioprocess was developed using a BCR with a porous sparger. To evaluate the interfacial area, the Sauter mean bubble diameter (D32) was measured using an image analysis algorithm and gas holdup (ϵG) was measured by the change in liquid height in the column. Together the D32 and ϵG were used in the calculation of interfacial area in the column. The KLa was evaluated with incorporation of the probe response lag, allowing more accurate representation of the KLa behaviour. The probe response lag was measured at all experimental conditions to ensure accuracy and reliability of data. The model hydrocarbon bioprocess employed C14-20 alkane-aqueous dispersions (2.5 - 20 vol% hydrocarbon) with suspended solids (0.5 - 6 g/l) at discrete super ficial gas velocity (uG) (1 - 3 cm/s). For systems with inert solids (corn our, dp = 13.36 m), the interfacial area and KLa were measured and the behaviour of KLa was described by separation of the in uences of interfacial area and oxygen transfer coefficient (KL). To further the understanding of oxygen transfer behaviour, non-viable yeast cells (dp = 5.059 m) were used as the dispersed solid phase and interfacial area behaviour was determined. This interfacial area behaviour was compared with the behaviour of systems with inert solids to understand the differences with change in solids type. In systems using inert solids, a linear relationship was found between G and uG. An empirical correlation fo rthe prediction of this behaviour showed an accuracy of 83.34% across the experimental range. The interfacial area showed a similar relationship with uG and the empirical correlation provided an accuracy of 78.8% for prediction across the experimental range. In inert solids dispersions, the KLa increased with uG as the result of an increase in interfacial area as well as increases in KL. An increase in solids loading indicated an initial increase in KLa, due to the in uence of liquid-film penetration on KL, followed by a decrease in KL at solids loading greater than 2.5 g/l, due to diffusion blocking effects. In systems with yeast dispersions, the presence of surfactant molecules in the media inhibited coalescence up to a yeast loading of about 3.5 g/l, and resulted in a decrease in D32. Above this yeast loading, the fine yeast particles increased the apparent viscosity of the dispersion sufficiently to overcome the in uence of surfactant and increase the D32. The behaviour of G in yeast dispersions was similar to that found with inert solids and demonstrated a linear increase with uG. However, in yeast dispersions, the interaction between alkane concentration and yeast loading caused a slight increase in dispersion viscosity and therefore G. An empirical correlation to predict G behaviour with increased uG was developed with an accuracy of 72.55% for the experimental range considered. Comparison of yeast and inert solids dispersions indicated a 37.5% lower G in yeast dispersions compared to inert solids as a result of the apparent viscosity introduced by finer solid particles. This G and D32 data resulted in a linear increase in interfacial area with uG with no significant in uence of alkane concentration and yeast loading. This interfacial area was on average 6.7% lower than interfacial area found in inert solid dispersions as a likely consequence of the apparent viscosity with finer particles. This study provides a fundamental understanding of the parameters which underpin oxygen transfer in a model hydrocarbon bioprocess BCR under discrete hydrodynamic conditions. This fundamental understanding provides a basis for further investigation of hydrocarbon bioprocesses and the prediction of KLa behaviour in these systems. / AFRIKAANSE OPSOMMING: Die uitbreiding van die internasionale brandstofbedryf het 'n toename veroorsaak in die hoeveelheid koolwaterstowwe geproduseer as 'n deur-produk van raffinadery gas-tot-vloeistof prosesse. Omskakeling van koolwaterstowwe na hoër waarde produkte is moontlik met behulp van bioprosesse, wat volhoubaar en omgewingsvriendelik is. As gevolg van die tekort aan suurstof in die alkaan molekule, is die verskaffing van voldoende suurstof deur deurlugting 'n groot uitdaging vir die optimalisering van koolwaterstof bioprosesse. Terwyl die suurstof oplosbaarheid verhoog in die teenwoordigheid van koolwaterstowwe, onder sekere proses voorwaardes is die verhoogde oplosbaarheid oortref deur 'n toename in viskositeit, wat 'n depressive veroorsaak in die algehele volumetriese suurstofoordragkoëffisiënt (KLa). Die suurstof oordrag tempo word gedefinieer in terme van 'n konsentrasie dryfkrag (suurstof oplosbaarheid) en KLa. Die KLa term behels 'n suurstofoordragkoëffisiënt (KL) en die gas-vloeistof oppervlakarea (a), wat afhanklik is van die vloeistof eienskappe en stelsel hidrodinamika. Hierdie gedrag is nie goed verstaan vir koolwaterstof bioprosesse nie, asook in kolom reaktors (BCR). Om 'n begrip van suurstof oordrag gedrag te voorsien, is 'n model koolwaterstof bioproses ontwikkel met 'n BCR met 'n poreuse besproeier. Om die oppervlakarea te evalueer, is die gemiddelde Sauter deursnit (D32) gemeet deur 'n foto-analise algoritme en gas vasvanging ( G) is gemeet deur die verandering in vloeibare hoogte in die kolom. Saam is die D32 en G gebruik in die berekening van die oppervlakarea in die kolom. Die KLa is geëvalueer met insluiting van die meter se reaksie sloering, om n meer akkurate voorstelling van die KLa gedrag te bereken. Die meter reaksie sloering was gemeet op alle eksperimentele toestande om die akkuraatheid en betroubaarheid van data te verseker. Die model koolwaterstof bioproses gebruik n-C14-20 alkaan-water dispersies (2.5 - 20 vol% koolwaterstof) solide partikels (0.5 - 6 g/l) op diskrete oppervlakkige gas snelhede (1 - 3 cm/s). Vir stelsels met inerte solides (koring meel, dp = 13.36 m), is die oppervlakarea en KLa gemeet en die gedrag van KLa beskryf deur skeiding van die invloede van oppervlakarea en KL. Om die begrip van suurstof oordrag se gedrag te bevorder, is nie-lewensvatbare gisselle (dp = 5.059 m) gebruik as die verspreide solide fase en oppervlakarea is bepaal. Hierdie oppervlakarea gedrag is vergelyk met die van stelsels met inerte solides om die verskille met verandering in solide tipes te verstaan. In stelsels met inerte solides, is 'n line^ere verwantskap gevind tussen G en uG. 'n Empiriese korrelasie vir die voorspelling van hierdie gedrag is opgestel met 'n akkuraatheid van 83.34% in die eksperimentele reeks. Die oppervlakarea het 'n soortgelyke verhouding met uG en die empiriese korrelasie verskaf 'n akkuraatheid van 78,8% vir die voorspelling van oppervlakarea oor die eksperimentele reeks. In inerte solide dispersies, het die KLa toegeneem met uG as die gevolg van 'n toename in grens oppervlak asook stygings in KL. 'n Toename in solides belading het n aanvanklike styging in KLa aangedui, as gevolg van die invloed van die vloeistof-film penetrasie op KL, gevolg deur 'n afname in KL op vastestowwe ladings groter as 2.5 g/l, te danke aan diffusie blokkeer effekte. In stelsels met gis dispersies, het die teenwoordigheid van benattings molekules in die media samesmelting geïnhibeer tot 'n gis lading van ongeveer 3.5 g/l, en het gelei tot 'n afname in D32. Bo hierdie gis lading, het die fyn gis partikels die skynbare viskositeit van die verspreiding verhoog genoegsaam om die invloed van benattings molekules te oorkom en die D32 te verhoog. Die gedrag van G in gis dispersies was soortgelyk aan die van inerte solides en dui op 'n lineêre toename met uG. Maar in gis dispersies, het die interaksie tussen alkaan konsentrasie en gis lading 'n effense toename veroorsaak in die verstrooiing viskositeit en dus in G. 'n Empiriese korrelasie is ontwikkel om G gedrag te voorspel en het 'n akkuraatheid van 72,55% vir die eksperimentele verskeidenheid beskou. Vergelyking van gis en inerte patrikel dispersies wys 'n 37.5% laer G in gis dispersies in vergelyking met inerte vaste stowwe as 'n gevolg van die skynbare viskositeit bekendgestel deur fyner vastestowwe partikels. Hierdie G en D32 data het gelei tot 'n linere toename in grens oppervlak met uG met geen beduidende invloed van alkaan konsentrasie en gis lading nie. Die oppervlakarea was gemiddeld 6.7% laer as oppervlakarea gevind in inerte partikel dispersies as 'n waarskynlike gevolg van die skynbare viskositeit met fyner partikels. Hierdie studie bied 'n fundamentele begrip van die veranderlikes wat die suurstof oordrag definieer in 'n model koolwaterstof bioproses BCR onder diskrete hidrodinamiese voorwaardes. Hierdie fundamentele begrip bied n basis vir verdere ondersoek van koolwaterstof bioprosesse en en die voorspelling van KLa gedrag in hierdie stelsels.
3

Avaliação de parâmetros globais de desempenho de biorreatores pneumáticos através de fluidodinâmica computacional

Rodriguez, Guilherme Youssef 25 March 2015 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2016-10-10T12:43:24Z No. of bitstreams: 1 TeseGYR.pdf: 8156092 bytes, checksum: 727d9cd338ae7ed90fe24238b42228bd (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-11T20:34:55Z (GMT) No. of bitstreams: 1 TeseGYR.pdf: 8156092 bytes, checksum: 727d9cd338ae7ed90fe24238b42228bd (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-11T20:35:04Z (GMT) No. of bitstreams: 1 TeseGYR.pdf: 8156092 bytes, checksum: 727d9cd338ae7ed90fe24238b42228bd (MD5) / Made available in DSpace on 2016-10-11T20:42:33Z (GMT). No. of bitstreams: 1 TeseGYR.pdf: 8156092 bytes, checksum: 727d9cd338ae7ed90fe24238b42228bd (MD5) Previous issue date: 2015-03-25 / Outra / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Pneumatic bioreactors are devices free of moving parts which have the purpose of converting raw materials in bio-products of commercial interest by the action of enzymes or cells. They are promising in the biochemical industry, ensuring good oxygen transfer and consuming less energy. Global performance parameters such as global gas hold up and the volumetric oxygen transfer coefficient are important criteria in the design and selection among different geometries of the mentioned devices. In the present work it was carried out modeling and simulation of pneumatic bioreactors based on Computational Fluid Dynamics (CFD) in order to estimate the global gas hold up and the volumetric oxygen transfer coefficient in three different geometries of pneumatic bioreactors: bubble column, concentric tube airlift and split tube airlift. The simulated results of each performance parameter were verified by comparison with the experimental values reported by Thomasi et al. (2010) and Mendes and Badino (2015) for the fluids distilled water, glycerol solution 10 cP and xanthan gum solution 0.2% w/v (weight/volume) in a wide range of specific air flow rate (0 to 5 min- 1). Application suite ANSYS® 14.5 was used for numerical simulations in CFD. Important parameters such as the bubble diameter played a great influence on results of the volumetric oxygen transfer coefficient. It can be observed by the experimental and simulated results that the concentric tube airlift bioreactor was the best alternative to the global gas hold up and the volumetric oxygen transfer coefficient (reaching 14% and 0.06 s-1 for distilled water, respectively). It was found that the results obtained via the CFD agreed with the majority trend of experimental data, capturing the most important hydrodynamic phenomena and mass transfer characteristics, showing that the modeling of different systems with different fluids fulfilled the main objective of obtaining reliable models design and performance of other geometries of pneumatic bioreactors. / Os biorreatores pneumáticos são equipamentos industriais isentos de partes móveis que têm a finalidade de converter matérias-primas em bioprodutos de interesse comercial pela ação de enzimas ou células. São promissores na indústria bioquímica, pois garantem boa transferência de oxigênio consumindo menos energia. Parâmetros globais de desempenho, como a retenção gasosa global e o coeficiente volumétrico de transferência de oxigênio são critérios importantes no projeto e seleção entre geometrias diferentes dos equipamentos mencionados. No presente trabalho foi realizada a modelagem e a simulação de biorreatores pneumáticos baseada na Fluidodinâmica Computacional (CFD - Computational Fluid Dynamics) de forma a estimar a retenção gasosa global e o coeficiente volumétrico de transferência de oxigênio em três geometrias distintas: coluna de bolhas, airlift de cilindros concêntricos e airlift split. Os resultados simulados de cada parâmetro de desempenho foram verificados comparando-se com os valores experimentais reportados nos trabalhos de Thomasi et al. (2010) e Mendes e Badino (2015) para os fluidos água destilada, solução de glicerol 10 cP e solução de goma xantana 0,2% m/v (massa/volume) e vazão de alimentação específica de ar numa ampla faixa (0 a 5 min-1). Foi empregada a suíte de aplicativos ANSYS® 14.5 para as simulações numéricas em CFD. Parâmetros importantes, como o diâmetro de bolha, exerceram grande influência nos resultados referentes ao coeficiente volumétrico de transferência de oxigênio. Destaca-se, pelos resultados experimentais e simulados, que o biorreator pneumático do tipo airlift de cilindros concêntricos apresentou-se como a melhor alternativa para a retenção gasosa global e para o coeficiente volumétrico de transferência de oxigênio (atingindo 14% e 0,06 s-1 para a água destilada, respectivamente). Verificou-se que os resultados obtidos via CFD concordaram com a tendência majoritária dos dados experimentais, capturando os fenômenos mais relevantes das características hidrodinâmicas e da transferência de massa, mostrando que a modelagem dos diferentes sistemas com diferentes fluidos atendeu ao principal objetivo de obter modelos confiáveis para o projeto e comparação de desempenho de outras geometrias de biorreatores pneumáticos. / CNPq: 478472/2011-0 / CNPq: 140466/2011-8

Page generated in 0.1028 seconds