Spelling suggestions: "subject:"exygen transfer coefficient"" "subject:"0xygen transfer coefficient""
1 |
The overall oxygen transfer coefficient and interfacial area in hydrocarbon-based bioprocessesHollis, Peter Graham 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Bioconversion of hydrocarbons to value-added intermediates and products has significant industrial
potential using both prokaryotic and eukaryotic organisms. In particular, alkanes can
be converted to an expansive range of commercially important products using aerobic bioprocesses
under mild process conditions. Coupled with the relative abundance of alkanes derived
from gas to liquid (GTL) technologies, such as those employed by SASOL, South Africa, the
commercial potential for bioconverison of alkanes is large. However, unlike carbohydrate substrates,
alkane feedstocks are devoid of oxygen in their molecular structure. This means that
the entire oxygen demand needs to be met by oxygen transfer. Furthermore, a decline in oxygen
transfer in aqueous-hydrocarbon dispersions with increasing alkane concentration has been
observed to result from depression of the overall volumetric oxygen transfer coefficient (KLa).
Therefore, understanding KLa and the fundamental parameters underpinning its behaviour is
critical to ensuring the bioprocess is kinetically, rather than transport, limited in terms of both
operation and scale-up.
Previous studies have examined KLa in aerated-alkane-aqueous systems. In light of the importance
of oxygen transfer in bioprocesses, this study expands on the KLa understanding in
3-phase studies by including a fourth solid phase, thus more closely representing a hydrocarbonbased
bioprocess. The project aimed to determine the impact of agitation, alkane concentration
and solid loading on the Sauter mean bubble diameter (DSM), gas hold-up and specific interfacial
area (a) and correlate these parameters to KLa. This ultimately determined which parameter
was dominant over a range of process conditions. Furthermore, concurrent measurement of the
KLa and interfacial area meant the behaviour of the liquid side oxygen transfer coefficient (KL)
could be defined, providing further insight into how changes in the process conditions impact
on KLa.
Experiments were conducted in a 5 litre stirred tank bioreactor containing n-C14-20 straight chain
alkane, sparged with air at 0.8 vvm. In line with process conditions typical of a hydrocarbonbased
bioprocess, KLa and a were measured for agitation rates from 450 to 1000 RPM, alkane
concentrations from 2 to 20% v/v and yeast solids from 1 to 10 g/l. KLa was measured using
the gassing out procedure using a dissolved oxygen (DO) probe which measured the response
of the system to a step change in the sparge gas oxygen pressure. The probe response lag ( P), equal to the time taken for the probe to reach 63.2% of the saturation DO concentration, was
determined for every set of process conditions. The inverse of P, KP was taken into account
when calculating KLa from the DO probe response. The area was calculated from DSM and gas
hold-up. DSM was quantified using high speed photography and image analysis was performed
in Matlab® using bespoke routines. Elimination of optical distortion and the development of
an adequate light source was key to acquiring clear images.
Both KLa and interfacial area were found to be affected by changes in agitation, alkane concentration
and yeast loading. An increase in agitation increased the KLa over the entire range
of alkane concentration and yeast loading. Similarly, an increase in agitation resulted in an
increase in interfacial area, underpinned by a decrease in the DSM. It is therefore likely that the
interfacial area plays a dominant role in defining KLa when considering an increase in agitation.
Increases in alkane concentration resulted in a peak in KLa between 2.5 and 5% alkane
concentration while further increases in alkane concentration depressed KLa. This peak was
not observed in interfacial area, where an increase in alkane concentration resulted only in a
decrease in interfacial area, thus indicating a positive influence of KL on KLa at low alkane
concentrations. Further increases in alkane concentration beyond those creating the peak KLa
resulted in KLa depression, suggesting that the increasing viscosity imparted by the alkane decreases
both KL and interfacial area.
Increased yeast loading had opposing effects at low and high agitation rates. At low agitation
rates, increased loadings were observed to increase KLa, while increased loadings at high
agitation rates caused a decrease in KLa. This behaviour was also evident in interfacial area,
suggesting that in this regime KLa was defined by interfacial area behaviour.
Increased yeast loading was observed to depress the KLa for all alkane concentrations when
examined at a constant midpoint agitation rate. This trend was not evident in interfacial area,
which increased with increasing yeast loading at the same agitation rate. The positive influence
of yeast on interfacial area was likely caused by adhesion of the yeast particles to the bubble
surface, lowering the DSM by preventing coalescence. The disagreement between the KLa and
interfacial area results suggested that yeast loading impacted negatively on KL, which had an
over-riding negative impact on KLa.
The use of reliable methods for the determination of both interfacial area and KLa were demonstrated
for application in model hydrocarbon-based bioprocesses. The combined results offer
a unique insight into how changes in the process conditions impact independently on KL and
interfacial area, which when combined ultimately defined the KLa behaviour. Quantification of
the relative magnitude of the impact each parameter had on KLa contributed toward a fundamental
understanding of oxygen transfer in model hydrocarbon-based bioprocesses. / AFRIKAANSE OPSOMMING: Biologiese omsetting van koolwaterstowwe na produkte met finansiële waarde het beduidende
industriële potensiaal met behulp van beide prokariotiese en eukariotiese organismes. In die
besonder, kan alkane omgeskakel word na ’n uitgebreide reeks van kommersieel belangrike
produkte met behulp van aerobiese bioprosesse onder ligte proses voorwaardes. Tesame met die
relatiewe oorvloed van alkane afgelei van GTL tegnologie, soos dié van Sasol, Suid-Afrika, die
kommersiële potensiaal vir bioconverison van alkane is groot. Maar, in teenstelling koolhidrate
substrate, alkaan voerstowwe is beroof van suurstof in hul molekulêre struktuur. Dit beteken
dat die hele suurstof vereiste moet nagekom word deur suurstof oordrag. Verder het ’n afname
in suurstof oordrag in waterige-koolwaterstof dispersies met toenemende alkaan konsentrasie
waargeneem te lei van depressie van die algehele volumetriese suurstofoordragkoëffisiënt (KLa).
Daarom verstaan KLa en die fundamentele parameters onderliggend sy gedrag is van kritieke
belang om te verseker dat die bioprocess is kineties, eerder as vervoer, beperk in terme van
beide werking en skaal-up van bioprosesse.
Vorige studies het KLa in deurlug-alkaan-waterige stelsels ondersoek. In die lig van die belangrikheid
van suurstof oordrag in bioprosesse hierdie studie brei uit op die KLa begrip in driefase
studies deur die insluiting van ’n vierde soliede fase, dus meer nou wat ’n koolwaterstofgebaseerde
bioprocess. Die doel van die projek is om die impak van vermengingstempo, alkaan
konsentrasie en soliede inhout op die Sauter gemiddelde borrel deursnee (DSM), gas-vasvanging
en spesifieke gas-vloistof oppervlakarea (a) te kwantifiseer en korreleer met KLa gedrag. Dit
sou defineer die dominante parameter oor ’n verskeidenheid van proses voorwaardes. Verder,
gelyktydige meting van die KLa en oppervlakarea kan die gedrag van die vloeistof-kant suurstofoordragkoëffisiënt (KL) gedefinieer. Dit sal verskaf verdere insig in hoe die veranderinge in die
proses voorwaardes impak op KLa.
Eksperimente was uitgevoer in ’n 5 liter belugte geroerde tenk bioreaktor bevat n - C14-20 reguitketting
alkane, met lug met lug deurgeborrel by 0.8 VVM. In lyn met die proses voorwaardes
tipies van ’n koolwaterstof-gebaseerde bioprocess, KLa en a was gemeet vir vermengignstempos
van 450-1000 RPM, alkaan konsentrasies van 2-20 % v/v en gis vastestowwe van 1 tot 10
g / l. KLa is gemeet deur die vergassinguit prosedure met behulp van ’n suurstofmeter wat die
reaksie van die stelsel na ’n stap verandering in die voer gas suurstof druk gemeet het.
Die suurstofmeter reaksie vertraging ( P), gelyk aan die tyd wat dit neem vir die suurstofmeter
63.2 % van die versadiging DO konsentrasie te bereik, is bepaal vir elke procesopset. Die
inverse van P, KP is in ag geneem by die berekening van KLa uit die suurstofmeter reaksie. Die
gas-vloistof oppervlak is bereken vanaf DSM en gas hold-up. DSM is gekwantifiseer met behulp
van hoë spoed fotografie en beeld analise is uitgevoer in Matlab ® roetines. Uitskakeling
van optiese vervorming en die ontwikkeling van ’n voldoende ligbron was die sleutel tot die
verkryging van helder beelde.
Beide KLa en grens oppervlakarea gevind geraak word deur veranderinge in vermengignstempo,
alkaan konsentrasie en gis laai. ’N toename in geroer het die KLa verbeter oor die hele reeks
van alkaan konsentrasie en gis laai. Net so, ’n toename in geroer het gelei tot ’n toename in
grens oppervlak, ondersteun deur ’n afname in die DSM. Dit is dus waarskynlik dat die grens
oppervlak speel ’n dominante rol in die definisie van KLa by die oorweging van ’n toename in
roering. Stygings in alkaan konsentrasie gelei tot ’n hoogtepunt in KLa tussen 2.5 en 5 % alkaan
konsentrasie terwyl verdere verhogings in alkaan konsentrasie druk die KLa af. Die piek was
nie in oppervlakarea duidelik, waar ’n toename in alkaan konsentrasie gelei net tot ’n afname
in oppervlakarea, dus dui op ’n positiewe invloed van KL op KLa teen lae alkaan konsentrasies
waargeneem. Verdere stygings in alkaan konsentrasie verder as die skep van die piek
KLa gelei tot KLa depressie, wat daarop dui dat die toenemende viskositeit meegedeel deur die
alkaan verminder beide KL en grens oppervlak.
Verhoogde gis laai het opponerende effekte teen ’n lae en hoë vermengingstempo. By lae vermengingstempo,
’n verhoging in gis laai waargeneem KLa te verhoog, terwyl ’n verhoging in
gis laai op ’n hoë vermengingstempo veroorsaak ’n afname in KLa . Hierdie gedrag was ook
duidelik in grens oppervlak, wat daarop dui dat daar in hierdie regime KLa gedefinieer deur
grens oppervlak gedrag.
Verhoogde gis laai waargeneem die KLa te onderdruk vir alle alkaan konsentrasies wanneer
ondersoek teen ’n konstante middelpunt vermengingstempo. Hierdie tendens was nie duidelik
in tussenvlak gebied, wat verhoog met toenemende gis laai op dieselfde geroer koers. Die
positiewe invloed van gis op grens oppervlak is waarskynlik veroorsaak deur adhesie van die
gis deeltjies aan die borrel oppervlak, die verlaging van die DSM deur die voorkoming van
die saamsmelting van gasborrels. Die meningsverskil tussen die KLa en grens oppervlakarea
resultate voorgestel dat gis laai negatiewe uitwerking op KL, met ’n dominante negatiewe impak
op KLa.
Die gebruik van ’n betroubare metodes vir die bepaling van beide oppervlakarea en KLa gedemonstreer
vir toepassing in model koolwaterstof-gebaseerde bioprosesse. Die gekombineerde resultate
bied ’n unieke insig in hoe die veranderinge in die proses voorwaardes impak onafhanklik
op KL en oppervlakarea, wat wanneer gekombineer gedefinieer die KLa gedrag. Kwantifisering
van die relatiewe grootte van die impak elke parameter het op KLa bygedra tot ’n fundamentele begrip van suurstof oordrag in model koolwaterstof-gebaseerde bioprosesse.
|
2 |
Oxygen transfer in a model hydrocarbon bioprocess in a bubble column reactorCloete, Jannean Christelle 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The expansion of the global fuels industry has caused an increase in the quantity
of hydrocarbons produced as a by-product of refinery gas-to-liquid processes.
Conversion of hydrocarbons to higher value products is possible using bioprocesses,
which are sustainable and environmentally benign. Due to the deficiency
of oxygen in the alkane molecule, the supply of sufficient oxygen through aeration
is a major obstacle for the optimization of hydrocarbon bioprocesses. While the
oxygen solubility is increased in the presence of hydrocarbons, under certain process
conditions, the enhanced solubility is outweighed by an increase in viscosity,
causing a depression in overall volumetric oxygen transfer coefficient (KLa).
The rate at which oxygen is transferred is defined in terms of a concentration
driving force (oxygen solubility) and the overall volumetric oxygen transfer coefficient (KLa). The KLa term comprises an oxygen transfer coefficient (KL)
and the gas-liquid interfacial area (a), which are dependent on the
uid properties
and system hydrodynamics. This behaviour is not well understood for
hydrocarbon bioprocesses and in a bubble column reactor (BCR). To provide
an understanding of oxygen transfer behaviour, a model hydrocarbon bioprocess
was developed using a BCR with a porous sparger.
To evaluate the interfacial area, the Sauter mean bubble diameter (D32) was
measured using an image analysis algorithm and gas holdup (ϵG) was measured
by the change in liquid height in the column. Together the D32 and ϵG were
used in the calculation of interfacial area in the column.
The KLa was evaluated with incorporation of the probe response lag, allowing
more accurate representation of the KLa behaviour. The probe response lag
was measured at all experimental conditions to ensure accuracy and reliability
of data.
The model hydrocarbon bioprocess employed C14-20 alkane-aqueous dispersions
(2.5 - 20 vol% hydrocarbon) with suspended solids (0.5 - 6 g/l) at discrete super
ficial gas velocity (uG) (1 - 3 cm/s). For systems with inert solids (corn
our,
dp = 13.36 m), the interfacial area and KLa were measured and the behaviour
of KLa was described by separation of the in
uences of interfacial area and oxygen
transfer coefficient (KL). To further the understanding of oxygen transfer
behaviour, non-viable yeast cells (dp = 5.059 m) were used as the dispersed
solid phase and interfacial area behaviour was determined. This interfacial area
behaviour was compared with the behaviour of systems with inert solids to understand
the differences with change in solids type.
In systems using inert solids, a linear relationship was found between G and uG.
An empirical correlation fo rthe prediction of this behaviour showed an accuracy
of 83.34% across the experimental range. The interfacial area showed a similar relationship with uG and the empirical correlation provided an accuracy of 78.8%
for prediction across the experimental range.
In inert solids dispersions, the KLa increased with uG as the result of an increase
in interfacial area as well as increases in KL. An increase in solids loading indicated
an initial increase in KLa, due to the in
uence of liquid-film penetration
on KL, followed by a decrease in KL at solids loading greater than 2.5 g/l, due
to diffusion blocking effects.
In systems with yeast dispersions, the presence of surfactant molecules in the
media inhibited coalescence up to a yeast loading of about 3.5 g/l, and resulted
in a decrease in D32. Above this yeast loading, the fine yeast particles increased
the apparent viscosity of the dispersion sufficiently to overcome the in
uence of
surfactant and increase the D32.
The behaviour of G in yeast dispersions was similar to that found with inert
solids and demonstrated a linear increase with uG. However, in yeast dispersions,
the interaction between alkane concentration and yeast loading caused a
slight increase in dispersion viscosity and therefore G. An empirical correlation
to predict G behaviour with increased uG was developed with an accuracy of
72.55% for the experimental range considered. Comparison of yeast and inert
solids dispersions indicated a 37.5% lower G in yeast dispersions compared to
inert solids as a result of the apparent viscosity introduced by finer solid particles.
This G and D32 data resulted in a linear increase in interfacial area
with uG with no significant in
uence of alkane concentration and yeast loading.
This interfacial area was on average 6.7% lower than interfacial area found in
inert solid dispersions as a likely consequence of the apparent viscosity with finer
particles.
This study provides a fundamental understanding of the parameters which underpin
oxygen transfer in a model hydrocarbon bioprocess BCR under discrete
hydrodynamic conditions. This fundamental understanding provides a basis for
further investigation of hydrocarbon bioprocesses and the prediction of KLa behaviour
in these systems. / AFRIKAANSE OPSOMMING: Die uitbreiding van die internasionale brandstofbedryf het 'n toename veroorsaak
in die hoeveelheid koolwaterstowwe geproduseer as 'n deur-produk van raffinadery gas-tot-vloeistof prosesse. Omskakeling van koolwaterstowwe na hoër
waarde produkte is moontlik met behulp van bioprosesse, wat volhoubaar en
omgewingsvriendelik is. As gevolg van die tekort aan suurstof in die alkaan
molekule, is die verskaffing van voldoende suurstof deur deurlugting 'n groot
uitdaging vir die optimalisering van koolwaterstof bioprosesse. Terwyl die suurstof
oplosbaarheid verhoog in die teenwoordigheid van koolwaterstowwe, onder
sekere proses voorwaardes is die verhoogde oplosbaarheid oortref deur 'n
toename in viskositeit, wat 'n depressive veroorsaak in die algehele volumetriese
suurstofoordragkoëffisiënt (KLa).
Die suurstof oordrag tempo word gedefinieer in terme van 'n konsentrasie dryfkrag
(suurstof oplosbaarheid) en KLa. Die KLa term behels 'n suurstofoordragkoëffisiënt
(KL) en die gas-vloeistof oppervlakarea (a), wat afhanklik is van die vloeistof
eienskappe en stelsel hidrodinamika. Hierdie gedrag is nie goed verstaan vir
koolwaterstof bioprosesse nie, asook in kolom reaktors (BCR). Om 'n begrip
van suurstof oordrag gedrag te voorsien, is 'n model koolwaterstof bioproses
ontwikkel met 'n BCR met 'n poreuse besproeier.
Om die oppervlakarea te evalueer, is die gemiddelde Sauter deursnit (D32)
gemeet deur 'n foto-analise algoritme en gas vasvanging ( G) is gemeet deur
die verandering in vloeibare hoogte in die kolom. Saam is die D32 en G gebruik
in die berekening van die oppervlakarea in die kolom.
Die KLa is geëvalueer met insluiting van die meter se reaksie sloering, om n
meer akkurate voorstelling van die KLa gedrag te bereken. Die meter reaksie
sloering was gemeet op alle eksperimentele toestande om die akkuraatheid en
betroubaarheid van data te verseker.
Die model koolwaterstof bioproses gebruik n-C14-20 alkaan-water dispersies (2.5 -
20 vol% koolwaterstof) solide partikels (0.5 - 6 g/l) op diskrete oppervlakkige gas
snelhede (1 - 3 cm/s). Vir stelsels met inerte solides (koring meel, dp = 13.36 m),
is die oppervlakarea en KLa gemeet en die gedrag van KLa beskryf deur skeiding
van die invloede van oppervlakarea en KL. Om die begrip van suurstof oordrag
se gedrag te bevorder, is nie-lewensvatbare gisselle (dp = 5.059 m) gebruik as die
verspreide solide fase en oppervlakarea is bepaal. Hierdie oppervlakarea gedrag is
vergelyk met die van stelsels met inerte solides om die verskille met verandering
in solide tipes te verstaan.
In stelsels met inerte solides, is 'n line^ere verwantskap gevind tussen G en uG.
'n Empiriese korrelasie vir die voorspelling van hierdie gedrag is opgestel met
'n akkuraatheid van 83.34% in die eksperimentele reeks. Die oppervlakarea het 'n soortgelyke verhouding met uG en die empiriese korrelasie verskaf 'n akkuraatheid
van 78,8% vir die voorspelling van oppervlakarea oor die eksperimentele
reeks.
In inerte solide dispersies, het die KLa toegeneem met uG as die gevolg van 'n
toename in grens oppervlak asook stygings in KL. 'n Toename in solides belading
het n aanvanklike styging in KLa aangedui, as gevolg van die invloed van die
vloeistof-film penetrasie op KL, gevolg deur 'n afname in KL op vastestowwe
ladings groter as 2.5 g/l, te danke aan diffusie blokkeer effekte.
In stelsels met gis dispersies, het die teenwoordigheid van benattings molekules
in die media samesmelting geïnhibeer tot 'n gis lading van ongeveer 3.5 g/l, en
het gelei tot 'n afname in D32. Bo hierdie gis lading, het die fyn gis partikels
die skynbare viskositeit van die verspreiding verhoog genoegsaam om die invloed
van benattings molekules te oorkom en die D32 te verhoog.
Die gedrag van G in gis dispersies was soortgelyk aan die van inerte solides en
dui op 'n lineêre toename met uG. Maar in gis dispersies, het die interaksie tussen
alkaan konsentrasie en gis lading 'n effense toename veroorsaak in die verstrooiing
viskositeit en dus in G. 'n Empiriese korrelasie is ontwikkel om G gedrag te
voorspel en het 'n akkuraatheid van 72,55% vir die eksperimentele verskeidenheid
beskou. Vergelyking van gis en inerte patrikel dispersies wys 'n 37.5% laer G
in gis dispersies in vergelyking met inerte vaste stowwe as 'n gevolg van die
skynbare viskositeit bekendgestel deur fyner vastestowwe partikels. Hierdie G
en D32 data het gelei tot 'n linere toename in grens oppervlak met uG met geen
beduidende invloed van alkaan konsentrasie en gis lading nie. Die oppervlakarea
was gemiddeld 6.7% laer as oppervlakarea gevind in inerte partikel dispersies as
'n waarskynlike gevolg van die skynbare viskositeit met fyner partikels.
Hierdie studie bied 'n fundamentele begrip van die veranderlikes wat die suurstof
oordrag definieer in 'n model koolwaterstof bioproses BCR onder diskrete hidrodinamiese
voorwaardes. Hierdie fundamentele begrip bied n basis vir verdere
ondersoek van koolwaterstof bioprosesse en en die voorspelling van KLa gedrag
in hierdie stelsels.
|
3 |
Avaliação de parâmetros globais de desempenho de biorreatores pneumáticos através de fluidodinâmica computacionalRodriguez, Guilherme Youssef 25 March 2015 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2016-10-10T12:43:24Z
No. of bitstreams: 1
TeseGYR.pdf: 8156092 bytes, checksum: 727d9cd338ae7ed90fe24238b42228bd (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-11T20:34:55Z (GMT) No. of bitstreams: 1
TeseGYR.pdf: 8156092 bytes, checksum: 727d9cd338ae7ed90fe24238b42228bd (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-11T20:35:04Z (GMT) No. of bitstreams: 1
TeseGYR.pdf: 8156092 bytes, checksum: 727d9cd338ae7ed90fe24238b42228bd (MD5) / Made available in DSpace on 2016-10-11T20:42:33Z (GMT). No. of bitstreams: 1
TeseGYR.pdf: 8156092 bytes, checksum: 727d9cd338ae7ed90fe24238b42228bd (MD5)
Previous issue date: 2015-03-25 / Outra / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Pneumatic bioreactors are devices free of moving parts which have the purpose
of converting raw materials in bio-products of commercial interest by the action of enzymes
or cells. They are promising in the biochemical industry, ensuring good oxygen transfer and
consuming less energy. Global performance parameters such as global gas hold up and the
volumetric oxygen transfer coefficient are important criteria in the design and selection
among different geometries of the mentioned devices. In the present work it was carried out
modeling and simulation of pneumatic bioreactors based on Computational Fluid Dynamics
(CFD) in order to estimate the global gas hold up and the volumetric oxygen transfer
coefficient in three different geometries of pneumatic bioreactors: bubble column, concentric tube airlift and split tube airlift. The simulated results of each performance parameter were verified by comparison with the experimental values reported by Thomasi et al. (2010) and Mendes and Badino (2015) for the fluids distilled water, glycerol solution 10 cP and xanthan gum solution 0.2% w/v (weight/volume) in a wide range of specific air flow rate (0 to 5 min- 1). Application suite ANSYS® 14.5 was used for numerical simulations in CFD. Important parameters such as the bubble diameter played a great influence on results of the volumetric oxygen transfer coefficient. It can be observed by the experimental and simulated results that the concentric tube airlift bioreactor was the best alternative to the global gas hold up and the volumetric oxygen transfer coefficient (reaching 14% and 0.06 s-1 for distilled water, respectively). It was found that the results obtained via the CFD agreed with the majority trend of experimental data, capturing the most important hydrodynamic phenomena and mass transfer characteristics, showing that the modeling of different systems with different fluids fulfilled the main objective of obtaining reliable models design and performance of other geometries of pneumatic bioreactors. / Os biorreatores pneumáticos são equipamentos industriais isentos de partes
móveis que têm a finalidade de converter matérias-primas em bioprodutos de interesse
comercial pela ação de enzimas ou células. São promissores na indústria bioquímica, pois
garantem boa transferência de oxigênio consumindo menos energia. Parâmetros globais de desempenho, como a retenção gasosa global e o coeficiente volumétrico de transferência de oxigênio são critérios importantes no projeto e seleção entre geometrias diferentes dos equipamentos mencionados. No presente trabalho foi realizada a modelagem e a simulação de
biorreatores pneumáticos baseada na Fluidodinâmica Computacional (CFD - Computational Fluid Dynamics) de forma a estimar a retenção gasosa global e o coeficiente volumétrico de transferência de oxigênio em três geometrias distintas: coluna de bolhas, airlift de cilindros concêntricos e airlift split. Os resultados simulados de cada parâmetro de desempenho foram
verificados comparando-se com os valores experimentais reportados nos trabalhos de
Thomasi et al. (2010) e Mendes e Badino (2015) para os fluidos água destilada, solução de glicerol 10 cP e solução de goma xantana 0,2% m/v (massa/volume) e vazão de alimentação específica de ar numa ampla faixa (0 a 5 min-1). Foi empregada a suíte de aplicativos ANSYS® 14.5 para as simulações numéricas em CFD. Parâmetros importantes, como o diâmetro de bolha, exerceram grande influência nos resultados referentes ao coeficiente volumétrico de transferência de oxigênio. Destaca-se, pelos resultados experimentais e simulados, que o biorreator pneumático do tipo airlift de cilindros concêntricos apresentou-se como a melhor alternativa para a retenção gasosa global e para o coeficiente volumétrico de
transferência de oxigênio (atingindo 14% e 0,06 s-1 para a água destilada, respectivamente).
Verificou-se que os resultados obtidos via CFD concordaram com a tendência majoritária dos
dados experimentais, capturando os fenômenos mais relevantes das características
hidrodinâmicas e da transferência de massa, mostrando que a modelagem dos diferentes
sistemas com diferentes fluidos atendeu ao principal objetivo de obter modelos confiáveis
para o projeto e comparação de desempenho de outras geometrias de biorreatores
pneumáticos. / CNPq: 478472/2011-0 / CNPq: 140466/2011-8
|
Page generated in 0.0797 seconds