• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulación de la dinámica y metabolismo mitocondrial por incretina GLP-1 en células de la línea A7r5

Torres Rivera, Gloria Andrea January 2014 (has links)
Doctor en Bioquímica / Autorizada por el autor, pero con restricción para ser publicada a texto completo hasta diciembre de 2015, en el Portal de Tesis Electrónicas / El péptido similar a glucagón-1 (GLP-1) es una incretina secretada por las células intestinales. Su acción clásica es regular la respuesta secretoria de insulina por el páncreas. Sin embargo, recientemente se ha descrito que GLP-1 posee acciones extrapancreáticas muy similares a la insulina, con mecanismos de señalización tejido-específicos. Por sus muchas acciones fisiológicas, y la mayoría relacionadas con los efectos insulinotrópicos de esta incretina, derivados peptidomiméticos de GLP-1 se utilizan actualmente para controlar la hiperglicemia en individuos con diabetes mellitus tipo 2. Debido a esto se hace muy interesante investigar su acción específica sobre distintos tipos celulares que sufren alteraciones en patologías relacionadas con alteraciones metabólicas asociadas a la diabetes mellitus. En particular, se hace muy interesante estudiar el efecto de GLP-1 sobre las células vasculares musculares lisas (VSMC). Estas células responden a variadas señales ambientales fisiopatológicas o bioquímicas, regulando su función y su fenotipo. Sin embargo, aún no se comprende la totalidad de mecanismos involucrados en los cambios fenotípicos que ocurren en estas células en patologías como la diabetes. Evidencias recientes han involucrado a las alteraciones metabólicas que sufren las VSMC con la mayor incidencia de aterosclerosis en pacientes diabéticos. Las mitocondrias son los principales organelos asociados con el control del metabolismo energético dentro de una célula. Actualmente, se sabe que procesos subcelulares tales como la interacción mitocondria-retículo endoplásmico y los fenómenos de fusión y fisión mitocondrial, conocido como dinámica mitocondrial, son capaces de regular la función y el metabolismo mitocondrial. La dinámica mitocondrial está finamente regulada por las proteínas Mitofusinas 1/2 y OPA-1 para el caso del proceso de fusión, y Drp-1 y Fis-1 para el caso del proceso de fisión mitocondrial. Se ha descrito un papel trascendental para la proteína Drp-1 en la regulación del proceso de fisión, ya que puede sufrir modificaciones postraduccionales que modulan su interacción con la mitocondria generando cambios en el proceso de fisión. Dentro de las modificaciones postraduccionales de Drp-1 se destaca una fosforilación inhibitoria por PKA. Debido a que el receptor clásico de GLP-1 es una proteína de siete dominios de transmembrana acoplada a proteína Gs, la activación por GLP-1 de este receptor aumentaría los niveles intracelulares de cAMP activando PKA, pudiendo regular potencialmente el proceso de fisión mitocondrial vía Drp-1. Esta regulación podría ser un nuevo mecanismo por el cual GLP-1 podría regular, vía el control de la dinámica, el metabolismo mitocondrial y por ende el metabolismo celular. Con todos estos antecedentes se propuso como hipótesis que GLP 1 inhibe el proceso de fisión mitocondrial, incrementando el metabolismo mitocondrial a través de la fosforilación de Drp 1, en células de la línea A7r5. Para probar esta hipótesis, células A7r5 correspondientes a células embrionarias de VSMC de aorta de rata se trataron con GLP-1 (100 nM) por 0 – 24 h y se incubaron con la sonda Mitotracker Orange en los últimos 30 min de exposición a la hormona. Posteriormente, las células se visualizaron en un microscopio confocal, la red mitocondrial se reconstruyó tridimensionalmente a partir de las imágenes obtenidas, determinándose el número, volumen promedio y área promedio de las mitocondrias. Los resultados muestran que GLP-1 inhibió el proceso de fisión de la red mitocondrial a las 3 h de tratamiento, lo cual se evidenció por un aumento del volumen y el área mitocondrial promedio. Además, en estas condiciones, los niveles de la proteína constitutiva mitocondrial mtHsp70 no se modificaron en relación a los controles, descartando que GLP-1 induzca biogénesis mitocondrial. El metabolismo mitocondrial se evaluó mediante la determinación de potencial de membrana mitocondrial, usando la sonda JC1; producción de especies reactivas de oxígeno (ROS), usando la sonda dihidrocloro fluoresceína; niveles intracelulares de ATP, usando lucifenina/luciferasa; y tasa de respiración, medido por oxigrafía. GLP-1 (100 nM) aumentó el potencial de la membrana mitocondrial, los niveles de ROS, los niveles intracelulares de ATP y el consumo de oxígeno. Se demostró que en células A7r5, GLP-1 activa a la vía transduccional dependiente de PKA. Además, mediante inmunoprecipitación de Drp-1 y posterior detección de la fosforilación de Drp-1 por Western blot se determinó que GLP-1 induce la fosforilación de Drp-1 de una manera similar a la inducida por forskolina. Además, mediante inmunofluorecencia se observó que GLP-1 previene la translocación de Drp-1 a la mitocondria. Utilizando H-89, un inhibidor específico de PKA, se demostró que la inhibición del proceso de fisión mitocondrial es dependiente de la activación de PKA. Posteriormente, se analizó la dependencia de la vía PKA para la acción de GLP-1 sobre el metabolismo mitocondrial. H-89 revertió el efecto de GLP-1 sobre el potencial de membrana mitocondrial y el incremento de los niveles de ROS. En resumen, los datos obtenidos permite sugerir que GLP-1 aumenta el metabolismo mitocondrial en las células A7r5 por un mecanismo que involucra la inhibición del proceso de fisión mitocondrial y la fosforilación de Drp-1 a través de una vía transduccional dependiente de PKA / Glucagon like peptide-1 (GLP-1) is an incretin hormone secreted by intestinal cells. Its classical action is to regulate insulin secretion in the pancreas. However, recently extrapancreatic insulinotropic actions of GLP-1 were described involving tissue-specific signaling pathways. Because GLP-1 have a variety of physiological actions mainly related with its insulinotropic actions, currently GLP-1 peptide mimetics are used to treat hyperglycemia in diabetes mellitus type 2 patients. For this reason, GLP-1 actions on different cell types that undergo pathological metabolic alterations related with diabetes mellitus are very interesting to explore. Particularly, we have focused on GLP-1 effects on vascular smooth muscle cells (VSMC). These cells can regulate both function and phenotype depending on biochemical and physiopathological environmental signals. However, mechanisms involved in VSMC phenotypic change in diseases such as diabetes are just beginning to be understood. Recent evidences have associated the existence of metabolic alterations in VSMC with an increase of atherosclerosis in diabetic patients. Mitochondria are the main organelle that controls energetic metabolism within cells. Specifically, subcellular events such as the interaction between mitochondria and endoplasmic reticulum and mitochondrial fusion and fission (i.e. mitochondrial dynamics) regulate mitochondrial function and metabolism. Mitochondrial dynamics is regulated by proteins, Mitofusins 1/2 and OPA-1 control fusion, and Drp-1 and Fis-1 control fission. Drp-1 has an important role in fission control, because it can be post-translationally modified, changing its interaction with mitochondria and affecting the mitochondrial fission rate. The most important post-translational modification is an inhibitory phosphorylation by PKA. The classical GLP-1 receptor (GLP-1R) is a seven transmembrane Gs-protein coupled receptor, and its activation causes an increase of cAMP levels activating PKA. Because this PKA activations GLP-1R could potentially regulates mitochondrial fission by Drp-1 phosphorylation. This regulation could be a novel GLP-1-dependent mechanism to control mitochondrial dynamics, mitochondrial metabolism and cellular metabolism. Consequently, we hypothesized that GLP-1 decreases mitochondrial fission and increases metabolism through Drp-1 phosphorylation in the A7r5 cell line. To test this hypothesis, A7r5 cells (rat embryonary aortic VSMC) were exposed to GLP-1 (100 nM) for 0 – 24 h and incubated with Mitotracker Orange dye in the last 30 min of “the hormone treatment”. Later, cells were observed under confocal microscope, mitochondrial network was reconstructed from images obtained, and number, average volume and area were determined. Our findings showed that GLP-1 decreased mitochondrial fission at 3 h, evidenced by the increase in mitochondrial volume average and area. These events did not affect mitochondrial constitutive mtHsp70 protein levels, discarding mitochondrial biogenesis induced by GLP-1. Mitochondrial metabolism was evaluated by measuring mitochondrial membrane potential, using JC1 dye; reactive oxygen species (ROS), by dihydrochloro fluorescein dye; intracellular ATP level, using luciferin/luciferase; and respiration rate, by oxygraphy. GLP-1 (100 nM) increased mitochondrial membrane potential, ROS levels, ATP content and oxygen consumption. We demonstrated that GLP-1 activates PKA signaling pathway in A7r5 cells. Moreover, through Drp-1 immunoprecipitation and phospho-Drp-1 detection by Western blot, we showed that GLP-1, as well as forskolin, induced Drp-1 phosphorylation. Consequently, Drp-1 translocation to the mitochondria was prevented by GLP-1, as determined by immunofluorescence. Using the PKA specific inhibitor, H-89, it was demonstrated that GLP-1 decreased mitochondrial fission depends on PKA activation. Subsequently, PKA dependence on GLP-1-induced mitochondrial metabolism was explored. We determined that H-89 prevented GLP-1 effects on both mitochondrial membrane potential and ROS production. In summary, our data suggest that GLP-1 increases mitochondrial metabolism in A7r5 cells by a mechanism involving mitochondrial fission and Drp-1 phosphorylation through a PKA-dependent signaling pathway / FONDECYT FONDAP ANILLO ACT1111
2

Desarrollo y caracterización de un conjugado del péptido análogo a glucagón (GLP-1) a nanopartículas de oro, como nueva forma de entrega de biomoléculas con potencial aplicación en diabetes

Pérez Ortiz, María Magdalena 05 1900 (has links)
Tesis presentada a la Universidad de Chile para optar al grado de Doctora en Ciencias Farmacéuticas / No autorizada por el autor para ser publicada a texto completo en el Portal de Tesis Electrónicas / Para probar este concepto, se sintetizaron en fase sólida tres nuevos análogos del GLP-1, los cuales fueron caracterizados por cromatografía líquida y espectrometría de masas. Adicionalmente, a los péptidos se les evaluó su estructura secundaria por dicroísmo circular y su actividad insulinotrópica in vitro en la línea celular de páncreas Beta-TC-6. Posteriormente se prepararon y caracterizaron fisicoquímicamente los conjugados obtenidos; para ello se utilizaron técnicas de espectrofotometría UV-visible, microscopía electrónica de transmisión, potencial zeta y dispersión dinámica de la luz. Finalmente se evaluó la estabilidad de los conjugados, se estudió su permeabilidad intestinal, utilizando un sistema in vitro basado en un cocultivo de células de adenocarcinoma de colon humano y mucosecretoras (Caco-2/goblet), y además se determinó la actividad hipoglicemiante in vivo de uno de los péptidos y su respectivo conjugado a AuNP, después de una administración intraperitoneal en ratas. Los resultados obtenidos revelaron que los tres péptidos sintetizados: GLP-1(7- 37)-Lys(Acet), GLP-1(7-37)-Lys(Cys) y GLP-1(7-37)-Lys(PegCys), tienen una conformación de tipo α hélice en disolución acuosa y presentan una actividad insulinotrópica similar a la de la incretina endógena GLP-1. Sin embargo, generan conjugados que difieren en estabilidad y capacidad de penetrar el epitelio intestinal, probablemente debido al tipo de interacción que generan con las AuNP. De esta forma, los conjugados de los péptidos que contienen cisteína (péptidos tiolados) resultaron ser más estables que el del péptido sin cisteína, frente al pH gástrico e intestinal, pues generan una interacción de tipo Au-S que le otorga una mayor estabilidad estérica al sistema coloidal. Por otra parte, el conjugado de AuNP al péptido GLP-1(7-37)-Lys(PegCys) fue el que penetró en mayor medida la monocapa de células, encontrándose aproximadamente un 0.016 % de oro después de 4 h de incubación, mientras que con los otros conjugados el nivel de oro no superó el 0.008 %. Además los péptidos y sus conjugados a AuNP no presentaron toxicidad en los sistemas celulares empleados (Beta-TC-6 y Caco-2/goblet, respectivamente). Finalmente, de la evaluación de la actividad hipoglicemiante in vivo se obtuvo que la eficacia hipoglicémica para el análogo GLP-1(7-37)-Lys(PegCys) y su conjugado a AuNP fue similar a la de la incretina endógena (18.7 ± 6.67 %, 27.6 ± 6.33 % y 22.1 ± 8.26 %, respectivamente), revelando que tanto la modificación realizada en el extremo C- terminal de GLP-1, como la presencia de la AuNP, no afectan su bioactividad. De esta forma, el sistema de entrega desarrollado en esta Tesis demostró penetrar las células intestinales en diferentes grados, y disminuir los niveles de glicemia in vivo de una manera similar al péptido endógeno después de su administración intraperitoenal, revelando que este tipo de sistemas es capaz de atravesar barreras biológicas y que la conjugación al nanomaterial no afecta la actividad de la biomolécula, por lo que podría convertirse en una estrategia para la entrega de biomacromoléculas con aplicación en diabetes / Generally, the therapeutic potential of peptides and proteins is hampered by their physicochemical characteristics, which prevent their successful delivery. In this regard, GLP-1 is a peptide incretin that has great therapeutic usefulness due to their interesting action on glucose metabolism, so it is currently an excellent candidate option for the treatment of the type 2 Diabetes Mellitus. However, as a peptidic macromolecule, GLP- 1 has a poor permeability across the intestinal epithelium and is very susceptible to the enzymatic degradation. To overcome these drawbacks some efforts have been made to improve its therapeutic efficacy, such as development of metabolically stable analogs, but very few studies have been focused on the study of the delivery systems to prolong their action and improve its bioavailability. In this Thesis the study of a potential delivery system based on the use of gold nanoparticles (AuNP) for biomacromolecules, such as GLP-1, is presented. This system searches for to increase the permeability of peptides across the intestinal epithelium and enhance its bioavailability while retaining the biological activity of the biomolecules. Thus, a nanoscale delivery system was developed, wherein GLP-1 analogues were conjugated to the surface of AuNP. To probe this concept, three new analogs of GLP-1 on solid phase were synthesized; the peptides were characterized by liquid chromatography and mass spectrometry and additionally their secondary structure and in vitro insulinotropic activity, using Beta-TC-6 pancreatic cells, were evaluated. Subsequently, the conjugates were physicochemically characterized by UVvisible spectrophotometry, transmission electron microscopy, zeta potential and dynamic light scattering. Finally, the stability of the conjugates and their intestinal permeability, using a mucosecretory in vitro system based on human colon adenocarcinoma cells (Caco-2) and goblet cells were studied. Additionally, the in vivo hypoglycemic activity after intraperitoneal administration en rats of one of the peptides and its conjugate was also determinate. The results revealed that all three peptides synthesized: GLP-1(7-37)-Lys(Acet), GLP-1(7-37)-Lys(Cys) and GLP-1(7-37)-Lys(PegCys), have an α helix conformation in solution, and equal insulinotropic activity than the endogenous incretin GLP-1. However, their conjugates differ in stability and ability to penetrate the intestinal epithelium, probably due to the difference in the interaction with the AuNP. In this way, the conjugates of the peptides containing cysteine (thiolated peptides) were more stable, to the gastric and intestinal pH, than the peptide without cysteine because generate an interaction of Au-S that gives a greater steric stability to the colloidal system. Moreover, the conjugate of GLP-1(7-37)-Lys (PegCys) to AuNP penetrated the cell monolayer in a greater extent than the others, being found about 0.016 % gold after 4 h of incubation, while with the other conjugated the gold level did not exceed 0.008 %. In addition, peptides and their conjugates to AuNP did not show toxicity at cell systems used (Beta-TC-6 and Caco-2/goblet, respectively). Finally, the evaluation of the in vivo hypoglycemic activity showed that the hypoglycemic efficacy for the GLP-1(7-37)-Lys (PegCys) analogue and its AuNP conjugate were similar to the endogenous incretin (18.7 ± 6.67 %, 27.6 ± 6.33 % and 22.1 ± 8.26 %, respectively), revealing that the modification in the C-terminal of the GLP-1 molecule and the presence of the AuNP, do not affect its bioactivity. Thereby, the delivery system developed in this Thesis showed penetrate the intestinal cells in different degrees, and decrease blood glucose levels in vivo in a similar way to the endogenous peptide after intraperitoenal administration, revealing that this type of system is capable of cross biological barriers and that the conjugation to the nanomaterial does not affect the activity of the biomolecule, so it could become a strategy for the delivery of biomacromolecules with application in diabetes

Page generated in 0.0703 seconds