1 |
Cloning and characterisation of the HMA3 gene and its promoter from Arabidopsis halleri (L.) O'Kane and Al'Shehbaz and Arabidopsis thaliana (L.) HeynholdHoffmann, Toni January 2007 (has links)
Being living systems unable to adjust their location to changing environmental conditions, plants display homeostatic networks that have evolved to maintain transition metal levels in a very narrow concentration range in order to avoid either deficiency or toxicity. Hence, plants possess a broad repertoire of mechanisms for the cellular uptake, compartmentation and efflux, as well as for the chelation of transition metal ions.
A small number of plants are hypertolerant to one or a few specific transition metals. Some metal tolerant plants are also able to hyperaccumulate metal ions. The Brassicaceae family member Arabidopis halleri ssp. halleri (L.) O´KANE and AL´SHEHBAZ is a hyperaccumulator of zinc (Zn), and it is closely related to the non-hypertolerant and non-hyperaccumulating model plant Arabidopsis thaliana (L.) HEYNHOLD. The close relationship renders A. halleri a promising emerging model plant for the comparative investigation of the molecular mechanisms behind hypertolerance and hyperaccumulation. Among several potential candidate genes that are probably involved in mediating the zinc-hypertolerant and zinc-hyperaccumulating trait is AhHMA3. The AhHMA3 gene is highly similar to AtHMA3 (AGI number: At4g30120) in A. thaliana, and its encoded protein belongs to the P-type IB ATPase family of integral membrane transporter proteins that transport transition metals. In contrast to the low AtHMA3 transcript levels in A. thaliana, the gene was found to be constitutively highly expressed across different Zn treatments in A. halleri, especially in shoots.
In this study, the cloning and characterisation of the HMA3 gene and its promoter from Arabidopsis halleri (L.) O´KANE and AL´SHEHBAZ and Arabidopsis thaliana (L.) HEYNHOLD is described. Heterologously expressed AhHMA3 mediated enhanced tolerance to Zn and to a much lesser degree to cadmium (Cd) but not to cobalt (Co) in metal-sensitive mutant strains of budding yeast. It is demonstrated that the genome of A. halleri contains at least four copies of AhHMA3, AhHMA3-1 to AhHMA3-4. A copy-specific real-time RT-PCR indicated that an AhHMA3-1 related gene copy is the source of the constitutively high transcript level in A. halleri and not a gene copy similar to AhHMA3-2 or AhHMA3-4.
In accordance with the enhanced AtHMA3mRNA transcript level in A. thaliana roots, an AtHMA3 promoter-GUS gene construct mediated GUS activity predominantly in the vascular tissues of roots and not in shoots. However, the observed AhHMA3-1 and AhHMA3-2 promoter-mediated GUS activity in A. thaliana or A. halleri plants did not reflect the constitutively high expression of AhHMA3 in shoots of A. halleri. It is suggested that other factors e. g. characteristic sequence inserts within the first intron of AhHMA3-1 might enable a constitutively high expression. Moreover, the unknown promoter of the AhHMA3-3 gene copy could be the source of the constitutively high AhHMA3 transcript levels in A. halleri. In that case, the AhHMA3-3 sequence is predicted to be highly homologous to AhHMA3-1.
The lack of solid localisation data for the AhHMA3 protein prevents a clear functional assignment. The provided data suggest several possible functions of the AhHMA3 protein: Like AtHMA2 and AtHMA4 it might be localised to the plasma membrane and could contribute to the efficient translocation of Zn from root to shoot and/or to the cell-to-cell distribution of Zn in the shoot. If localised to the vacuolar membrane, then a role in maintaining a low cytoplasmic zinc concentration by vacuolar zinc sequestration is possible. In addition, AhHMA3 might be involved in the delivery of zinc ions to trichomes and mesophyll leaf cells that are major zinc storage sites in A. halleri. / Pflanzen sind lebende Systeme, die nicht in der Lage sind ihren Standort sich ändernden Umweltbedingungen anzupassen. Infolgedessen weisen Pflanzen homöostatischeNetzwerke auf, welche die Mengen an intrazellulären Übergangsmetallen in einem sehr engen Konzentrationsbereich kontrollieren um somit Vergiftungs- oder Mangelerscheinungen zu vermeiden.
Eine kleine Anzahl von Pflanzen ist hypertolerant gegenüber einem oder mehreren Übergangsmetallen. Einige wenige dieser metalltoleranten Pflanzen sind fähig Übergangsmetalle in beträchtlichen Mengen zu speichern, sprich zu hyperakkumulieren, ohne Vergiftungserscheinungen zu zeigen. Die Haller’sche Schaumkresse (Arabidopis halleri ssp. halleri (L.) O´KANE und AL´SHEHBAZ) aus der Familie der Kreuzblütler (Brassicaceae) ist ein solcher Hyperakkumulator für Zink (Zn). Sie ist nah verwandt mit der Modellpflanze Ackerschmalwand (Arabidopsis thaliana (L.) HEYNHOLD), die jedoch nicht-hypertolerant und nicht-hyperakkumulierend für Übergangsmetalle ist. Diese nahe Verwandtschaft erlaubt vergleichende Studien der molekularen Mechanismen, die Hypertoleranz und Hyperakkumulation zu Grunde liegen. Zu der Gruppe von Kandidatengenen, die möglicherweise von Bedeutung für die Zink-hypertoleranten und -hyperakkumulierenden Eigenschaften von A. halleri sind, gehört AhHMA3, ein Gen mit großer Ähnlichkeit zu AtHMA3 (AGI Nummer: At4g30120) aus A. thaliana. Es kodiert ein Protein aus der Familie transmembraner Übergangsmetall-Transportproteine, den P-typ IB ATPasen. Im Gegensatz zu den niedrigen AtHMA3 Transkriptmengen in A. thaliana wird das AhHMA3 Gen in A. halleri in Gegenwart verschiedener Zn Konzentrationen konstitutiv hoch exprimiert, insbesondere im Spross der Pflanze.
Diese Arbeit beschreibt die Klonierung und Charakterisierung des HMA3 Gens und seines Promoters aus A. halleri und A. thaliana. Es wurde gezeigt, dass heterolog exprimiertes AhHMA3 Protein in metallsensitiven Hefestämmen eine erhöhte Toleranz gegenüber Zink und zu einem geringen Grad gegenüber Kadmium (Cd) jedoch nicht gegenüber Kobalt (Co) vermittelt.Weiterhin wurden im Genom von A. halleri mindestens vier AhHMA3 Genkopien, AhHMA3-1 bis AhHMA3-4, nachgewiesen. Eine Genkopie-spezifische Echtzeit-RT-PCR (real-time RT-PCR) deutete darauf hin, dass eine zu AhHMA3-1 und nicht zu AhHMA3-2 oder AhHMA3-4 ähnliche Genkopie die Quelle der konstitutiv hohen Transkriptmengen in A. halleri ist.
In Übereinstimmung mit erhöhten mRNS Transkriptmengen inWurzeln von A. thaliana, vermittelte ein AtHMA3 Promoter-GUS (ß-Glucuronidase) Genkonstrukt GUS-Aktivität hauptsächlich in den Leitgeweben der Wurzeln jedoch nicht des Sprosses. Die vermittelte GUS-Aktivität durch Promoterfragmente von AhHMA3-1 und AhHMA3-2 in A. thaliana oder A. halleri Pflanzen spiegelte jedoch nicht die konstitutiv hohe AhHMA3 Expression im Spross von A. halleri wieder. Es wird vermutet, dass andere Faktoren die konstitutiv hohe Expression ermöglichen wie zum Beispiel die gefundenen kopiespezifischen Sequenzinsertionen innerhalb des ersten AhHMA3-1 Introns. Weiterhin ist es denkbar, dass der unbekannte Promoter der AhHMA3-3 Genkopie die Quelle der konstitutiv hohen AhHMA3 Transkriptmengen ist. In diesem Fall wird eine sehr hohe Ähnlichkeit zwischen den Sequenzen von AhHMA3-3 und der AhHMA3-1 vorhergesagt.
Es konnten keine deutlichen Ergebnisse zur intrazellulären Lokalisierung gemacht werden, die eine exakte Einordnung der Funktion des AhHMA3 Proteins erlauben würden. Die bisher ermittelten Ergebnisse schlagen jedoch mehrere mögliche Funktionen für AhHMA3 vor: Ähnlich den AhHMA3 homologen Proteinen, AtHMA2 und AtHMA4, könnte AhHMA3 in der Plasmamembran der Zelle sitzen und dort zur effizienten Translokation von Zink aus der Wurzel in den Spross und/oder zur Zell-zu-Zell Verteilung von Zn im Spross beitragen. Falls AhHMA3 in der Membran der Vakuole sitzt, könnte es eine Rolle bei der Aufrechterhaltung niedriger zytoplasmatischer Zinkkonzentrationen durch vakuoläre Zinksequestrierung spielen. Zusätzlich ist es denkbar, dass AhHMA3 an der Abgabe von Zinkionen an Trichome und Blattmesophyllzellen beteiligt ist, die die Haupteinlagerungsorte für Zink in A. halleri darstellen.
|
2 |
The plasma membrane lipid asymmetry of Leishmania donovani and its relevance for phagocytosisWeingärtner, Adrien 21 May 2012 (has links)
In großen Teilen der Welt verursachen intrazelluläre Parasiten der Spezies Leishmania schwerwiegende Infektionen beim Menschen. Die Exposition eines Phospholipids (Phosphatidylserin, PS) steht unter Verdacht Fresszellen zur Aufnahme der Parasiten zu stimulieren. Bisher ist die Regulation der Phospholipidverteilung in der Plasmamembran dieser Parasiten kaum erforscht. In der vorliegenden Arbeit wurde ein lipidtransportierender Proteinkomplex identifiziert, der einen wesentlichen Beitrag zur asymmetrischen Lipidverteilung in der Plasmamembran von Leishmania donovani leistet. Die Zerstörung des Komplexes führte zum Verlust des einwärts gerichteten Lipidtransports und zur Anreicherung von Phosphatidylethanolamin (PE) auf der Zelloberfläche des Parasiten. Diese veränderte Lipidasymmetrie hatte jedoch keinen Einfluss auf die Phagozytose durch Makrophagen. Darüber hinaus brachte die Untersuchung des Insektenstadiums (Promastigote) verschiedener Leishmania Spezies zu Tage, dass die Menge an PS unterhalb des Detektionslimits modernster Nachweisverfahren liegt. Des Weiteren konnte gezeigt werden, dass der Parasit über einen Scramblase-Mechanismus verfügt, der durch intrazelluläres Kalzium stimulierbar ist. Die Scramblase-Aktivität ist, im Gegensatz zu dem zuvor beschriebenen einwärts gerichteten Lipidtransport, energieunabhängig und ermöglicht die bidirektionale Translokation von fluoreszenzmarkiertem Phosphatidylcholin (PC), PE, PS und Sphingomyelin (SM). Dementsprechend konnte nach Kalziumstimulierung endogenes PE auch in der äußeren Lipidschicht der Plasmamembran detektiert werden, wobei deren Barrierefunktion nicht beeinträchtigt wurde. Diese Ergebnisse geben neue Einblicke in die dynamische Regulation der Lipidverteilung über die Plasmamembran des Parasiten und verdeutlichen, dass die Exposition von PS und PE nicht essentiell für das Eindringen der Leishmanien in die Wirtszellen ist. / The protozoan parasite Leishmania causes severe infections in humans throughout the world. Following the transmission via sand flies to its mammalian host the extracellular parasite has to gain entry into phagocytic cells to initiate a successful infection. Specific surface exposed phospholipids have been implicated in Leishmania macrophage-interaction, but the mecha-nisms controlling and regulating the plasma membrane lipid distribution remains to be eluci-dated. In the present work a lipid transporting protein complex was identified in Leishmania dono-vani which plays an essential role in maintaining an asymmetric lipid distribution across the plasma membrane. Loss of the protein complex abolishes the inward-directed lipid transport and thus e.g. to an increased cell surface exposure of phosphatidylethanolamine (PE). In spite of this altered lipid asymmetry the uptake by macrophages is unaffected. Moreover, Leishma-nia promastigotes of different species lack detectable amounts of phosphatidylserine (PS) although being infective. Furthermore, a scramblase activity following a cytosolic calcium signal was demonstrated. This scramblase mechanism facilitated, in contrast to the previous described inward directed lipid transport, the bidirectional movement of fluorescent lipid analogues of PC, PE, PS and SM in an energy-independent manner. In accordance with these findings endogenous PE was exposed to the outer plasma membrane leaflet following the Ca2+-signal, while the plasma membrane itself remained intact. These results provide novel insight into the dynamic regulation of the transbilayer lipid distri-bution across the parasite plasma membrane and reveal that exposure of PS and PE is not cru-cial for invasion of the host cell by Leishmania donovani promastigotes.
|
Page generated in 0.0185 seconds