• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 5
  • 1
  • Tagged with
  • 41
  • 23
  • 17
  • 15
  • 13
  • 12
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular characterization of Cdu-B1, a major locus controlling cadmium accumulation in durum wheat (Triticum turgidum L. var durum) grain

2012 September 1900 (has links)
A major gene controlling grain cadmium (Cd) concentration, designated as Cdu-B1, has been mapped to the long arm of chromosome 5B, but the genetic factor(s) conferring the low Cd phenotype are currently unknown. Genetic mapping of markers linked to Cdu-B1 in a population of recombinant inbred substitution lines (RSLs) revealed that the gene(s) associated with variation in Cd concentration reside(s) in wheat deletion bin 5BL9 between fraction breakpoints 0.76 and 0.79, and linked to two candidate genes; PCS2 (phytochelatin synthetase) and Xwg644, which codes for a known ABC (ATP-binding cassette) protein. Genetic mapping and quantitative trait locus (QTL) analysis of grain Cd concentration was performed in a doubled haploid (DH) population and revealed that these genes were not associated with Cdu-B1. Two expressed sequence markers (ESMs), and five sequence tagged site (STS) markers were identified that co-segregated with Cdu-B1, and explained >80% of the phenotypic variation in grain Cd concentration. A gene coding for a P1B-ATPase, designated as OsHMA3 (heavy metal associated), has recently been associated with phenotypic variation in grain Cd concentration in rice. Mapping of the orthologous gene to OsHMA3 in the DH population revealed complete linkage with Cdu-B1 and was designated as HMA3-B1. Fine mapping of Cdu-B1 in >4000 F2 plants localized Cdu-B1 to a 0.14 cM interval containing HMA3-B1. Two bacterial artificial chromosomes (BACs) containing full-length coding sequence for HMA3-B1 and HMA3-A1 (homoeologous copy from the A genome) were identified and sequenced. Sequencing of HMA3-B1 from high and low Cd accumulators of durum wheat revealed a 17 bp duplication in high accumulators that results in predicted pre-mature stop codon and thus, a severely truncated protein. Several DNA markers linked to Cdu-B1, including HMA3-B1, were successfully converted to high throughput markers and were evaluated for practical use in breeding programs. These markers were successful at classifying a collection of 96 genetically diverse cultivars and breeding lines into high and low Cd accumulators and will have broad application in breeding programs targeting selection for low grain Cd concentrations. Current results support HMA3-B1 as a candidate gene responsible for phenotypic differences in grain Cd concentrations in durum wheat.
2

Accelerated Testing Methodology for Evaluating Pavement Patching Materials

Fragachan, Jose M 04 May 2007 (has links)
This research describes a proposed accelerated testing procedure for evaluating pavement patching materials under the simulation of traffic loading and environmental conditions such as freeze-thaw cycles. Potholes were constructed in concrete blocks with different tilt angles (13¢ª, 17¢ª and 22¢ª) to simulate normal and shear wheel surface stresses. Different patching materials, including hot mix, cold mix and commercial cold patch were tested. Various cyclic loads accompanied with cycles of freezing and thawing were applied to the patch. Patch performance is assessed by visual monitoring of the surface distresses and measuring surface elevation for rutting and shoving determination. Applied vertical loads varied between 2,250 and 4,500 pounds at a frequency of 2 Hz. Patch performance comparisons were made as a function of the patch mix, applied load, number of applied loads, frequency of loading, and applied freeze/thaw cycles. The new method of accelerated testing is successful in differentiating the performance of good and poor quality mixes. The proposed test could be used as a reliable method by state highway agencies for establishing acceptance criteria for selecting pothole patching mixtures.
3

Fractionation of recycled asphalt pavement materials: improvement of volumetric mix design driteria for High-RAP content surface mixtures

Shannon, Cory Patrick 01 July 2012 (has links)
The objective of this research is to examine the effects that different methods of RAP stockpile fractionation have on the volumetric mix design properties for high-RAP content surface mixes, with the goal of meeting all specified criteria for standard HMA mix designs. The processing of RAP materials results in the degradation of the aggregate structure of the original pavement. The increased presence of fine RAP materials in the stockpile can be attributed to the amount of crushing done on the RAP millings. Fractionation methods were designed to separate the stockpile at certain sizes to isolate the fine RAP materials which contained higher amounts of fine aggregate and negatively impacted the volumetric properties of the mix design. These isolated RAP materials were used in reduced proportions or completely eliminated, thereby decreasing the amount of fine aggregate material introduced to the mix. Mix designs were created using RAP materials included from each original stockpile and the two fractionated stockpiles created from each original stockpile at high-RAP contents of 30%, 40% and 50% by virgin binder replacement. Fractionation of RAP materials was effective in improving the volumetric properties of high-RAP content mixtures through reduction of fine aggregate material introduced by the RAP materials.
4

Performance Evaluation of Recycled Asphalt Shingles (RAS) in Hot Mix Asphalt (HMA): An Ontario Perspective

Islam, Riyad-UL 07 April 2011 (has links)
Today, a large quantity of waste is generated from the replacement of residential and commercial roofs. Many of the roofs being upgraded with previously constructed from asphalt shingles. Recycled Asphalt Shingles (RAS) contain nearly 30% of asphalt cement by mass, which can be a useful additive to asphalt pavements. In addition, shingles can offer significant potential savings through recycling and recovery as a construction material in flexible pavement. Currently, one and a half million tons of roofing shingle waste is generated each year in Canada related to the replacement of residential and commercial roofs and 90% of this valuable material is sent to landfills. If engineered properly, the addition of RAS into Hot Mix Asphalt (HMA) can provide significant benefits. The University of Waterloo’s Centre for Pavement and Transportation Technology (CPATT) is committed to working with public and private sector partners to develop sustainable technologies for the pavement industry. Using RAS in HMA can lead to economical, environmental and social benefits. Examples of which are reduced waste going to landfills and a reduction in the quantity of virgin material required. This research has involved the Ontario Centres of Excellence (OCE) and Miller Paving Limited. It was conducted to evaluate the performance of HMA containing RAS in both field and laboratory tests. A varying percentage of RAS was added to six common Ontario surface and binder layer of asphalt mixes. The intent was to determine if RAS could be added to improve performance and provide longer term cost savings. Laboratory testing was performed to evaluate the mix behavior. The elastic properties, fatigue life and resistance to thermal cracking were all evaluated at the CPATT laboratory. The characteristics of the mixes were evaluated by carrying out Dynamic Modulus, Resilient Modulus, Flexural Fatigue and Thermal Stress Restrained Specimen Test (TSRST) tests following American Association of State Highway and Transportation Officials (AASHTO) and American Society for Testing and Materials (ASTM) standards. Field test sections were constructed from HMA containing RAS to monitor the pavement behavior under natural environmental and traffic loading conditions. Evaluation of the field sites was performed using a Portable Falling Weight Deflectometer (PFWD) and carrying out distress surveys following the Ministry of Transportation Ontario (MTO) guidelines. The results to date show the sections performing very well with minimal to no distress developing. The results of the laboratory testing and field performance evaluations have shown encouraging results for the future use of RAS in HMA. If RAS can properly be engineered into HMA it can be a useful additive in both the surface and binder layers of the flexible pavement structure. Ultimately, the use of RAS in HMA can provide both an environmentally friendly and cost effective solution to the Ontario paving industry.
5

Prediction of Asphalt Mixture Compactability from Mixture, Asphalt, and Aggregate Properties

Muras, Andrew J. 2010 May 1900 (has links)
The underlying purpose of any pavement is to provide a safe, smooth and reliable surface for the intended users. In the case of hot mix asphalt (HMA) pavements, this includes producing a surface that is resistant to the principal HMA distress types: permanent deformation (or rutting) and fatigue damage (or cracking). To protect better against these distress types, there have recently been changes in HMA mixture design practice. These changes have had the positive effect of producing more damage resistant mixtures but have also had the effect of producing mixtures that require more compaction effort to obtain required densities. It is important to understand what properties of an HMA mixture contribute to their compactability. This study presents analysis of the correlation between HMA mixture properties and laboratory compaction parameters for the purpose of predicting compactability. Mixture property data were measured for a variety of mixtures; these mixtures were compacted in the laboratory and compaction parameters were collected. A statistical analysis was implemented to correlate the mixture data to the compaction data for the purpose of predicting compactability. The resulting model performs well at predicting compactability for mixtures that are similar to the ones used to make the model, and it reveals some mixture properties that influence compaction. The analysis showed that the binder content in an HMA mixture and the slope of the aggregate gradation curve are important in determining the compactability of a mixture.
6

Prediction of Reflection Cracking in Hot Mix Asphalt Overlays

Tsai, Fang-Ling 2010 December 1900 (has links)
Reflection cracking is one of the main distresses in hot-mix asphalt (HMA) overlays. It has been a serious concern since early in the 20th century. Since then, several models have been developed to predict the extent and severity of reflection cracking in HMA overlays. However, only limited research has been performed to evaluate and calibrate these models. In this dissertation, mechanistic-based models are calibrated to field data of over 400 overlay test sections to produce a design process for predicting reflection cracks. Three cracking mechanisms: bending, shearing traffic stresses, and thermal stress are taken into account to evaluate the rate of growth of the three increasing levels of distress severity: low, medium, and high. The cumulative damage done by all three cracking mechanisms is used to predict the number of days for the reflection crack to reach the surface of the overlay. The result of this calculation is calibrated to the observed field data (severity and extent) which has been fitted with an S-shaped curve. In the mechanistic computations, material properties and fracture-related stress intensity factors are generated using efficient Artificial Neural Network (ANN) algorithms. In the bending and shearing traffic stress models, the traffic was represented by axle load spectra. In the thermal stress model, a recently developed temperature model was used to predict the temperature at the crack tips. This process was developed to analyze various overlay structures. HMA overlays over either asphalt pavement or jointed concrete pavement in all four major climatic zones are discussed in this dissertation. The results of this calculated mechanistic approach showed its ability to efficiently reproduce field observations of the growth, extent, and severity of reflection cracking. The most important contribution to crack growth was found to be thermal stress. The computer running time for a twenty-year prediction of a typical overlay was between one and four minutes.
7

Performance Evaluation of Recycled Asphalt Shingles (RAS) in Hot Mix Asphalt (HMA): An Ontario Perspective

Islam, Riyad-UL 07 April 2011 (has links)
Today, a large quantity of waste is generated from the replacement of residential and commercial roofs. Many of the roofs being upgraded with previously constructed from asphalt shingles. Recycled Asphalt Shingles (RAS) contain nearly 30% of asphalt cement by mass, which can be a useful additive to asphalt pavements. In addition, shingles can offer significant potential savings through recycling and recovery as a construction material in flexible pavement. Currently, one and a half million tons of roofing shingle waste is generated each year in Canada related to the replacement of residential and commercial roofs and 90% of this valuable material is sent to landfills. If engineered properly, the addition of RAS into Hot Mix Asphalt (HMA) can provide significant benefits. The University of Waterloo’s Centre for Pavement and Transportation Technology (CPATT) is committed to working with public and private sector partners to develop sustainable technologies for the pavement industry. Using RAS in HMA can lead to economical, environmental and social benefits. Examples of which are reduced waste going to landfills and a reduction in the quantity of virgin material required. This research has involved the Ontario Centres of Excellence (OCE) and Miller Paving Limited. It was conducted to evaluate the performance of HMA containing RAS in both field and laboratory tests. A varying percentage of RAS was added to six common Ontario surface and binder layer of asphalt mixes. The intent was to determine if RAS could be added to improve performance and provide longer term cost savings. Laboratory testing was performed to evaluate the mix behavior. The elastic properties, fatigue life and resistance to thermal cracking were all evaluated at the CPATT laboratory. The characteristics of the mixes were evaluated by carrying out Dynamic Modulus, Resilient Modulus, Flexural Fatigue and Thermal Stress Restrained Specimen Test (TSRST) tests following American Association of State Highway and Transportation Officials (AASHTO) and American Society for Testing and Materials (ASTM) standards. Field test sections were constructed from HMA containing RAS to monitor the pavement behavior under natural environmental and traffic loading conditions. Evaluation of the field sites was performed using a Portable Falling Weight Deflectometer (PFWD) and carrying out distress surveys following the Ministry of Transportation Ontario (MTO) guidelines. The results to date show the sections performing very well with minimal to no distress developing. The results of the laboratory testing and field performance evaluations have shown encouraging results for the future use of RAS in HMA. If RAS can properly be engineered into HMA it can be a useful additive in both the surface and binder layers of the flexible pavement structure. Ultimately, the use of RAS in HMA can provide both an environmentally friendly and cost effective solution to the Ontario paving industry.
8

Evaluation of the Effects of Aging on Asphalt Rubber

January 2010 (has links)
abstract: Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a greater understanding of the nature of oxidative aging in asphalt pavements can potentially be of great importance in estimating the performance of a pavement before it is constructed. Of particular interest are the effects of aging on asphalt rubber pavements, due to the fact that, as a newer technology, few asphalt rubber pavement sections have been evaluated for their full service life. This study endeavors to shed some light on this topic. This study includes three experimental programs on the aging of asphalt rubber binders and mixtures. The first phase addresses aging in asphalt rubber binders and their virgin bases. The binders were subjected to various aging conditions and then tested for viscosity. The change in viscosity was analyzed and it was found that asphalt rubber binders exhibited less long term aging. The second phase looks at aging in a laboratory environment, including both a comparison of accelerated oxidative aging techniques and aging effects that occur during long term storage. Dynamic modulus was used as a tool to assess the aging of the tested materials. It was found that aging materials in a compacted state is ideal, while aging in a loose state is unrealistic. Results not only showed a clear distinction in aged versus unaged material but also showed that the effects of aging on AR mixes is highly dependant on temperature; lower temperatures induce relatively minor stiffening while higher temperatures promote much more significant aging effects. The third experimental program is a field study that builds upon a previous study of pavement test sections. Field pavement samples were taken and tested after being in service for 7 years and tested for dynamic modulus and beam fatigue. As with the laboratory aging, the dynamic modulus samples show less stiffening at low temperatures and more at higher temperatures. Beam fatigue testing showed not only stiffening but also a brittle behavior. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2010
9

EVALUATION OF THE RELIABILITY ANALYSIS APPROACH IN THE MECHANISTIC-EMPIRICAL PAVEMENT DESIGN GUIDE

Arefin, Mir Shahnewaz 27 June 2019 (has links)
No description available.
10

Developing Simple Lab Test To Evaluate HMA Resistance To Moisture, Rutting, Thermal Cracking Distress

Zhu, Feng 12 May 2008 (has links)
No description available.

Page generated in 0.0175 seconds