• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 5
  • 1
  • Tagged with
  • 41
  • 23
  • 17
  • 15
  • 13
  • 12
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Endommagement d'un enrobé bitumineux partiellement saturé en eau ou en saumure soumis à des sollicitations cycliques de gel-dégel et mécaniques / Deterioration of hot mix asphalt partially saturated with water or brine subjected to freeze-thaw cycles and mechanical cyclic loading

Lamothe, Sébastien 17 July 2014 (has links)
Au Québec, lors de la période de gel et dégel, l’enrobé bitumineux, constituant le revêtement de la chaussée, est soumis à des conditions sévères qui le dégradent. Ces conditions sont : précipitations de pluie et fontes de neige générant une saturation partielle du matériau, présence de sel déverglaçant, passages de véhicule lourd sollicitant mécaniquement le matériau, variations de températures engendrant la création de déformations et de contraintes au sein du revêtement, et présence de cycles de gel-dégel.A cet effet, la revue de la littérature porte sur l’étude : des conditions sévères (sollicitations mécaniques, climatiques, hydriques et chimiques), et des caractéristiques physiques de l’enrobé qui affectent sa durabilité, ses comportements mécaniques (viscoélastique linéaire et en fatigue) et thermomécaniques (coefficient de dilatation-contraction thermique).Notamment, un programme expérimental de laboratoire a été réalisé en vue de vérifier l’influence de ces conditions sévères sur la dégradation et le comportement de l’enrobé. Premièrement, des essais thermiques, incluant des cycles de gel et dégel, ont été réalisés sur des éprouvettes d’enrobé à l’état sec et partiellement saturé en eau ou en saumures. Les éprouvettes sont instrumentées d’une jauge axiale et de deux thermocouples. L’éprouvette partiellement saturée en eau, comparativement à celles partiellement saturées en saumures, est soumise à des dilatations et des contractions nettement plus importantes lors de la formation et la fonte de la glace. De +10 à +23°C, les coefficients de dilatation linéique des éprouvettes partiellement saturées sont assez similaires, mais supérieurs à celui de l’enrobé à l’état sec, ce qui implique que l’enrobé partiellement saturé se contracte et se dilate un peu plus que celui a l’état sec à ces températures.Deuxièmement, les éprouvettes ont été soumises à des essais mécaniques, de module complexe, afin d’évaluer l’évolution de leur endommagement suite aux cycles de gel et dégel. Les résultats des essais et du modèle rhéologique 2S2P1D ont été utilisés afin de simuler le comportement de l’enrobé selon les divers états. Au fil des cycles de gel et dégel, un endommagement est observable pour l’ensemble des éprouvettes, mais nettement supérieur pour l’éprouvette partiellement saturée en eau. De plus, pour les éprouvettes partiellement saturées, un comportement distinct est observable en dessous et au-dessus de la température de solidification des liquides.Pour terminer, l’étude du comportement à la fatigue de l’enrobé suivant l’état sec et partiellement saturé en eau est réalisée. A +10°C et 10Hz, seules des diminutions légères ont été observées au niveau du module (3%) et de la résistance à la fatigue (ɛ6 de 105 vs 109ƒμdef) pour l’enrobé partiellement saturé en eau. Ces faibles diminutions sont attribuables à la faible période d’immersion des éprouvettes d’enrobé dans l’eau, à la faible température de l’eau et de l’essai, à la faible teneur en vides des éprouvettes, au bitume modifié et aux granulats de qualité utilisés / During winter and spring in the province of Quebec, hot mix asphalt (HMA) pavement could be subjected to sever conditions over their design life. These conditions are: 1) rainfall and snowmelt, which generates the partial saturation of the HMA, 2) winter maintenance requiring the presence of de-icing salt, which acting chemically on HMA, 3) traffic, which acting mechanically on HMA, and 4) temperature changes and presence of freeze-thaw cycles (FTC) creating thermal stress and deformation (thermo-mechanical coupling) within the pavement, and pressure, within the material, generated by freezing water or brines. More specifically, the literature review of this work focuses on the study of: 1) severe conditions such as climatic, chemical and mechanical solicitations, 2) physical characteristics of HMAthat affect its durability, mechanical properties (viscoelastic and fatigue) and thermomechanical properties (coefficient of thermal contraction).An experimental laboratory program was conducted to verify the influence of these severe conditions on the degradation and behavior of HMA. First, thermal testing (-18 to +23°C), including freeze-thaw cycles (FTC, -18 to +10°C) were performed on samples under dry (D)and partially saturated (PS), with water or brine, states. The samples were instrumented with an axial gauge and two thermocouples. During FTC (-18 to +10°C), sample partially saturated with water, compared to those partially saturated with brines, is subject to expansions and contractions significantly greater during formation and melting of ice. In the temperature range from +10 to +23°C, the linear coefficients of thermal contraction of partially saturated samples are quite similar, but higher than that of HMA in dry state. At such temperature range, this implies that the partially saturated HMA contracts and expands a little more than that in dry state. Secondly, the samples were subjected to mechanical testing.The complex modulus test was performed in order to evaluate the damage of samples due to FTC. The test results and rheological model 2S2P1D were used to simulate the behavior of the HMA according to the various states. Over FTC, damage is observed for all samples, butmuch higher for the PS sample with water. Moreover, for PS samples, a distinct behavior is observable below and above the solidification temperature of the liquid. Finally, the study of the fatigue behavior of HMA under PS, with water, and D states is performed. At +10°C and 10Hz, only slight decreases were observed for complex modulus (3%) and fatigue (ε6 = 105 vs 109μstrain) for HMA partially saturated with water. These small decreases are due to the low period of immersion of samples in water, lowers temperatures of water and test, low void content of the samples, modified bitumen and good aggregates used.
32

ESTUDO LABORATORIAL DA UTILIZAÇÃO DE MATERIAL FRESADO EM MISTURAS ASFÁLTICAS RECICLADAS A QUENTE / LABORATORY STUDY USING RAP IN RECYCLING HOT MIX

Centofante, Roberta 19 February 2016 (has links)
Fundação de Amparo a Pesquisa no Estado do Rio Grande do Sul / The use of recycled materials can become a constructive application with good acceptance in the road sector, and is a great contribution to the sustainability policy. In this scenario, the study of economic and sustainable techniques for execution, construction and maintenance of highways, forces a survey in which they can find alternatives to the use of materials that reduce energy consumption, taking into account also the environmental appeal. Therefore, this is an objective research on the study of a way to use, reuse, and improve the use of the recycled asphalt pavement (RAP) in hot asphalt mixtures. This is possible due to the RAP's recycling process being a viable option to replace conventional pavement materials. Then, the RAP becomes an alternative when someone wishes to improve the properties of a material, called particle size stabilization, aiming at a correct particle size and obtain a material with greater strength, efficiency and lower cost. To achieve the purpose of this study, laboratory tests were made to evaluate the mechanical properties and adhesiveness of mixtures containing 10% addition of RAP, 20% and 30%, compared to a reference mix without the RAP addition. Additionally, the initial use of the Bailey method was an important factor to the formation of the mixtures and selection of the aggregates used to Superpave methodology to design dosage strength and preparing of the samples. For mechanical evaluation were used resilient modulus tests (RM) and to review viscoelastic were used uniaxial dynamic modulus test. In addition, the indirect tensile strength tests were performed (RT) and Flow Number (FN) and damage tests induced moisture through the Modified Lottman test and wear a Cantabro abrasion, for evaluation of the properties of adhesion and cohesion of the mixtures, respectively. So after obtained these results, it was possible to make an analysis of the use of these hot mix asphalt recycling hot pavements, as well as assess how much conventional mixtures can be improved with the inclusion of recycled material, replacing virgin aggregate. Then, it was possible to infer that the mechanical evaluation showed positive results with the addition of RAP compared to a reference blend. It´s possible to reduce the new binder content between 13 and 37%. The results showed that RM stiffness and indirect tensile strength increases with RAP amount. Furthermore, the FN test results showed reductions on permanent deformation and rutting of the RAP´s mixtures. Through the master curve obtained by dynamic module, along with modeling 2S2P1D, it was found that the CAF10 mixture unexpectedly had stiffness greater than the CAF20 mixture, which has 20% more RAP than the previous. / A utilização de materiais provenientes da reciclagem pode se tornar uma aplicação construtiva com boa aceitação no setor rodoviário, além de contribuir na política de sustentabilidade. Com isso, torna-se viável o estudo de técnicas econômicas e sustentáveis para execução, construção e manutenção de rodovias, forçando uma pesquisa em que se possa encontrar alternativas para o uso de materiais que diminuam o consumo de energia, levando em conta, ainda, o apelo ambiental. Por isso, essa pesquisa se objetiva no estudo de uma maneira de utilizar, reutilizar e melhor aproveitar o material fresado em misturas asfálticas a quente. Isto se dá devido ao processo de reciclagem deste material ser uma alternativa de possível substituição aos materiais convencionais naturais de pavimentação como, por exemplo, a pedra britada. Então, o material asfáltico do pavimento deteriorado (fresado) torna-se uma das alternativas quando se deseja melhorar as propriedades de um material, denominada estabilização granulométrica, visando corrigir sua granulometria e obter um material com maior resistência, eficiência e menor custo. Para atingir o objetivo desta pesquisa, foram realizados ensaios laboratoriais que pudessem avaliar as propriedades mecânicas e de adesividade das misturas contendo 10% de adição de fresado, 20% e 30%, comparadas a uma mistura de referência sem adição de agregado reciclado. Além disso, a utilização inicial do Método Bailey foi um fator importante para a formação das misturas e seleção dos agregados, sendo utilizada a metodologia Superpave para dosagem do teor de projeto e moldagem das amostras. Para avaliação mecânica, foram usados ensaios de módulo de resiliência (MR) e, ainda, para avaliação viscoelástica, ensaio de módulo dinâmico uniaxial. Além destes, foram realizados ensaios de resistência à tração indireta (RT) e Flow Number (FN) e, também, ensaios de dano por umidade induzida, através do ensaio de Lottman Modificado, e desgaste por abrasão Cântabro, para avaliação das propriedades de adesividade e coesão das misturas, respectivamente. Assim, após obtidos estes resultados, foi possível efetuar uma análise da utilização destas misturas asfálticas na reciclagem a quente de pavimentos, bem como avaliar o quanto as misturas convencionais podem ser melhoradas com a inserção de material reciclado, em substituição ao agregado virgem. Então, foi possível concluir que a avaliação mecânica apresentou resultados positivos com a adição de fresado, quando comparados a uma mistura de referência. Os resultados de MR mostraram que a rigidez aumenta ao passo que a quantidade de fresado é maior na composição das misturas, o mesmo foi possível verificar através dos ensaios de RT, os quais apresentaram valores crescentes. Além disso, o ensaio de FN comprovou que o fresado aumenta a rigidez das misturas. Através da curva mestra obtida pelo módulo dinâmico, juntamente com a modelagem 2S2P1D, foi possível constatar que a mistura CAF10, inesperadamente, apresentou rigidez maior que a mistura CAF20, a qual tem 20% a mais de fresado que a anterior.
33

Contribuições ao estudo da influência de propriedades de agregados no comportamento de misturas asfálticas densas / Contributions to the study of effects of aggregate properties on mechanical behavior of hot mix asphalt (HMA)

Gouveia, Lilian Taís de 04 December 2006 (has links)
O objetivo principal desta pesquisa é avaliar a influência que as propriedades estudadas dos agregados exercem sobre propriedades volumétricas e mecânicas de misturas asfálticas densas. Para tanto, foram avaliadas as propriedades de consenso e de origem, especificadas pelo Superpave, de um conjunto de agregados, além de suas densidades, porosidade, absorção e adesividade. Foram estudados agregados de gabro, basalto e areia natural e três tipos de granulometrias, uma denominada AZR, passando acima da zona de restrição da especificação Superpave, e outras duas, obtidas através do sistema de seleção granulométrica Bailey. Também três níveis de energia de compactação foram aplicados às misturas, 75, 110 e 155 golpes por face do corpo-de-prova Marshall. Avaliou-se o comportamento mecânico das misturas através dos ensaios de estabilidade e fluência Marshall, fluência por compressão uniaxial uniforme, fluência por compressão uniaxial dinâmica, resistência à tração, módulo de resiliência e fadiga. Os resultados mostraram que, de uma maneira geral, o agregado de gabro apresentou superioridade em relação ao agregado de basalto e de areia natural, tanto quando analisado isoladamente como quando analisado nas misturas asfálticas. Suas características de forma, angularidade e textura superficial permitiram arranjos entre partículas adequados, formando esqueletos estruturais resistentes à deformação permanente e também à fadiga. As análises das misturas à luz da granulometria mostram que, de uma maneira geral, a granulometria AZR produziu misturas mais estáveis, mais resistentes à deformação permanente e à fadiga. Pôde-se constatar, também, que as propriedades volumétricas são sensíveis às densidades dos agregados e à taxa de absorção destes, além de serem influenciadas diretamente pelas características de superfície dos agregados e pela energia de compactação. Com o aumento da energia de compactação aplicada, as partículas angulosas e rugosas dos agregados de gabro e de basalto arranjaram-se de maneira mais próxima e, por conseqüência, houve a diminuição dos vazios do agregado mineral e elevação da estabilidade e rigidez das misturas, sem, contudo, causar prejuízos à vida de fadiga. Os estudos sobre a absorção de asfalto pelos agregados revelaram que os agregados absorvem mais asfalto quanto mais fina a espessura da película de asfalto que os envolve e, também, que misturas com um mesmo teor de asfalto absorvem quantidades semelhantes de asfalto, sendo o tempo necessário para que a absorção se complete diretamente proporcional à viscosidade (temperatura) do asfalto. / The main objective of this research is to evaluate the influence that the studied properties of aggregates have on volumetric and mechanical characteristics of dense asphalt mixtures. It was evaluated origin and consensus properties, specified by the Superpave, for a set of aggregates, besides their densities, porosity, absorption and adhesiveness. Aggregates of gabbro, basalt and natural sand were studied and three types of aggregate gradations, one called AZR, passing above the zone of restriction of the Superpave specification, and two others, obtained through the Bailey method. Three levels of compaction energy were applied, corresponding respectively to 75, 110 and 155 blows of the Marshall hammer per face of the specimen. The mechanical behavior of the hot mix asphalt (HMA) was evaluated through the Marshall stability and flow, static and dynamic creep, indirect tensile strength, resilient modulus and fatigue tests. The results showed that, in general terms, the gabbro aggregate presented a superior behavior compared to the natural sand aggregate and the basalt aggregate, based on both aggregate and asphalt mixture evaluation tests. Its characteristics of form, angularity and surface texture resulted in an adequate arrangement between particles, building a resistant structural skeleton to both permanent deformation and fatigue cracking. Analyses of the HMA mixtures as a function of gradation showed that, in general terms, AZR mixtures were more stable, more resistant to permanent deformation and to fatigue cracking than Bailey mixtures. It could be evidenced that the volumetric properties depends on the specific gravity and the absorption rate of the aggregates, being also directly influenced by aggregate surface characteristics and compaction energy. Increasing the energy applied for specimen compaction resulted, for the angular and rough particles of gabbro and basalt aggregates, in a closer arrangement, with reduction of the voids in mineral aggregate and increase of the stability and stiffness of the mixtures, without, however, causing damages that could conduct to a shorter fatigue life. The studies about absorption of asphalt by aggregates showed that the smaller the asphalt film thickness the greater the asphalt absorption. The results also showed that HMA with the same asphalt content absorb similar amounts of asphalt, although the necessary time to complete the absorption is directly proportional to the asphalt viscosity (temperature).
34

A Study of Moisture Induced Material Loss of Hot Mix Asphalt (HMA)

Arepalli, Uma Maheswar 04 December 2017 (has links)
"Susceptibility of Hot Mix Asphalt (HMA) mixes to moisture induced damage is one of the main reasons for premature failures of asphalt pavements. Hence, the evaluation of mixes for the moisture susceptibility is an essential part of the mix design. The existing methods are found to be in-sufficient to characterize mixes in terms of their moisture damage potential, and many studies have been conducted to establish an improved methodology that can better address the issue. Most of these methods involve the determination of changes in mix properties due to moisture conditioning in the laboratory or to verify the mix performance in the field or the laboratory. In the field moisture susceptible mixes are also found to lose material to extents that are dependent upon the properties of the mix and materials. So far, there has been no comprehensive study to investigate the loss of materials due to moisture induced damage. The objective of this study was to identify and evaluate a conditioning and a test method that can be used on a regular basis to detect moisture susceptible mixes and to understand the combined problem of moisture induced material loss and change in strength/stiffness of the mix. The Moisture Induced Stress Tester (MIST), Ultrasonic Pulse Velocity (UPV), Dynamic Modulus in Indirect tensile mode, and Indirect Tensile Strength (ITS) tests were utilized in the study. The effluent from the MIST was checked for the gradation of dislodged aggregates and the Dissolved Organic Carbon (DOC) content. A system dynamics (SD) approach was also adopted to investigate the problem and establish a model to reproduce field observations. The results showed that the use of MIST in combination with UPV or ITS is able to identify moisture susceptible mixes, in particular for mixes with the potential of aggregate breakdown. The mixes with a higher loss of asphalt binder during conditioning exhibit higher tensile strengths, and those with a loss of finer materials, which is indicative of aggregate breakdown, show a lower tensile strength. For the mixes used in this study, the rate of change in indirect tensile strength during moisture conditioning was found to be strongly correlated to the pre-conditioning modulus of the mix. A step-by-step framework to characterize the moisture susceptible mixes was presented."
35

Contribuições ao estudo da influência de propriedades de agregados no comportamento de misturas asfálticas densas / Contributions to the study of effects of aggregate properties on mechanical behavior of hot mix asphalt (HMA)

Lilian Taís de Gouveia 04 December 2006 (has links)
O objetivo principal desta pesquisa é avaliar a influência que as propriedades estudadas dos agregados exercem sobre propriedades volumétricas e mecânicas de misturas asfálticas densas. Para tanto, foram avaliadas as propriedades de consenso e de origem, especificadas pelo Superpave, de um conjunto de agregados, além de suas densidades, porosidade, absorção e adesividade. Foram estudados agregados de gabro, basalto e areia natural e três tipos de granulometrias, uma denominada AZR, passando acima da zona de restrição da especificação Superpave, e outras duas, obtidas através do sistema de seleção granulométrica Bailey. Também três níveis de energia de compactação foram aplicados às misturas, 75, 110 e 155 golpes por face do corpo-de-prova Marshall. Avaliou-se o comportamento mecânico das misturas através dos ensaios de estabilidade e fluência Marshall, fluência por compressão uniaxial uniforme, fluência por compressão uniaxial dinâmica, resistência à tração, módulo de resiliência e fadiga. Os resultados mostraram que, de uma maneira geral, o agregado de gabro apresentou superioridade em relação ao agregado de basalto e de areia natural, tanto quando analisado isoladamente como quando analisado nas misturas asfálticas. Suas características de forma, angularidade e textura superficial permitiram arranjos entre partículas adequados, formando esqueletos estruturais resistentes à deformação permanente e também à fadiga. As análises das misturas à luz da granulometria mostram que, de uma maneira geral, a granulometria AZR produziu misturas mais estáveis, mais resistentes à deformação permanente e à fadiga. Pôde-se constatar, também, que as propriedades volumétricas são sensíveis às densidades dos agregados e à taxa de absorção destes, além de serem influenciadas diretamente pelas características de superfície dos agregados e pela energia de compactação. Com o aumento da energia de compactação aplicada, as partículas angulosas e rugosas dos agregados de gabro e de basalto arranjaram-se de maneira mais próxima e, por conseqüência, houve a diminuição dos vazios do agregado mineral e elevação da estabilidade e rigidez das misturas, sem, contudo, causar prejuízos à vida de fadiga. Os estudos sobre a absorção de asfalto pelos agregados revelaram que os agregados absorvem mais asfalto quanto mais fina a espessura da película de asfalto que os envolve e, também, que misturas com um mesmo teor de asfalto absorvem quantidades semelhantes de asfalto, sendo o tempo necessário para que a absorção se complete diretamente proporcional à viscosidade (temperatura) do asfalto. / The main objective of this research is to evaluate the influence that the studied properties of aggregates have on volumetric and mechanical characteristics of dense asphalt mixtures. It was evaluated origin and consensus properties, specified by the Superpave, for a set of aggregates, besides their densities, porosity, absorption and adhesiveness. Aggregates of gabbro, basalt and natural sand were studied and three types of aggregate gradations, one called AZR, passing above the zone of restriction of the Superpave specification, and two others, obtained through the Bailey method. Three levels of compaction energy were applied, corresponding respectively to 75, 110 and 155 blows of the Marshall hammer per face of the specimen. The mechanical behavior of the hot mix asphalt (HMA) was evaluated through the Marshall stability and flow, static and dynamic creep, indirect tensile strength, resilient modulus and fatigue tests. The results showed that, in general terms, the gabbro aggregate presented a superior behavior compared to the natural sand aggregate and the basalt aggregate, based on both aggregate and asphalt mixture evaluation tests. Its characteristics of form, angularity and surface texture resulted in an adequate arrangement between particles, building a resistant structural skeleton to both permanent deformation and fatigue cracking. Analyses of the HMA mixtures as a function of gradation showed that, in general terms, AZR mixtures were more stable, more resistant to permanent deformation and to fatigue cracking than Bailey mixtures. It could be evidenced that the volumetric properties depends on the specific gravity and the absorption rate of the aggregates, being also directly influenced by aggregate surface characteristics and compaction energy. Increasing the energy applied for specimen compaction resulted, for the angular and rough particles of gabbro and basalt aggregates, in a closer arrangement, with reduction of the voids in mineral aggregate and increase of the stability and stiffness of the mixtures, without, however, causing damages that could conduct to a shorter fatigue life. The studies about absorption of asphalt by aggregates showed that the smaller the asphalt film thickness the greater the asphalt absorption. The results also showed that HMA with the same asphalt content absorb similar amounts of asphalt, although the necessary time to complete the absorption is directly proportional to the asphalt viscosity (temperature).
36

Discrete Element Method (DEM) Analyses for Hot-Mix Asphalt (HMA) Mixture Compaction

Chen, Jingsong 01 May 2011 (has links)
Asphalt mixture compaction is an important procedure of asphalt mixture construction and can significantly affect the performance of asphalt pavement. Many laboratory compaction methods (or devices), have been developed to study the asphalt mixture compaction. Nevertheless, the whole process from the selection of aggregate to laboratory compaction is still time-consuming and requires significant human and material resources. In order to better understand asphalt mixture compaction, some researchers began to use finite element method (FEM) to study and analyze mixture compaction. However, FEM is a continuum approach and lacks the ability to take into account the slippage and interlocking of aggregates during compaction. Discrete Element Method (DEM) is a discontinuum analysis method, which can simulate the deformation process of joint systems or discrete particle assembly under quasi-static and dynamic condition. Therefore, it can overcome the shortcomings of FEM and is a more effective tool than FEM to simulate asphalt mixture compaction. In this study, an open source 3D DEM code implemented with the C++ programming language was modified and applied to simulate the compaction of hot-mix asphalt (HMA). A viscoelastic contact model was developed in the DEM code and was verified through comparison with well established analytical solutions. The input parameters of the newly developed contact model were obtained through nonlinear regression analysis of dynamic modulus test results. Two commonly used compaction methods (Superpave gyratory compaction and asphalt vibratory compaction) and one linear kneading compaction based on APA machine were simulated using the DEM code, and the DEM compaction models were verified through the comparison between the DEM predicted results and the laboratory measured test results. The air voids distribution within the asphalt specimens was also analyzed by post processing virtual DEM compaction digital specimens and the level of heterogeneity of the air void distribution within the specimens in the vertical and lateral directions was studied. The DEM simulation results in this study were in a relatively good agreement with the experimental data and previous research results, which demonstrates that the DEM is a feasible method to simulate asphalt mixture compaction under different loading conditions and, with further research, it could be a potentially helpful tool for asphalt mix design by reducing the number of physical compactions in the laboratory.
37

The limits of partial life cycle assessment studies in road construction practices: A case study on the use of hydrated lime in Hot Mix Asphalt

Schlegel, T., Puiatti, D., Ritter, H.-J., Lesueur, D., Denayer, C., Shtiza, A. 23 September 2020 (has links)
Extensive published literature shows that hydrated lime improves Hot Mix Asphalt (HMA) durability. Its impact on the environmental impact of HMA has not been investigated. This paper presents a comparative Life Cycle Assessment (LCA) for the use of HMA without hydrated lime (classical HMA) and with hydrated lime (modified HMA) for the lifetime of a highway. System boundaries cover the life cycle from cradle-to-grave, meaning extraction of raw materials to end of life of the road. The main assumptions were: 1. Lifetime of the road 50 years; 2. Classical HMA with a life span of 10 years, maintenance operations every 10 years; 3. Modified HMA with an increase in the life span by 25%, maintenance operations every 12.5 years. For the lifetime of the road, modified HMA has the lowest environmental footprint compared to classical HMA with the following benefits: 43% less primary total energy consumption resulting in 23% lower emissions of greenhouse gases. Partial LCAs focusing only on the construction and/or maintenance phase should be used with caution since they could lead to wrong decisions if the durability and the maintenance scenarios differ. Sustainable construction technologies should not only consider environmental impact as quantified by LCA, but also economic and social impacts as well. Avoiding maintenance steps means less road works, fewer traffic jams and hence less CO2 emissions.
38

Evaluation of HMA fracture mechanics-based thermal cracking model.

Lin, Sen January 2011 (has links)
Low temperature cracking is an important form of asphalt pavement deterioration in cold regions. The cracks develop when thermally induced stresses exceed the fracture resistance of the asphalt pavement. In this study, by incorporating HMA fracture mechanics into thermal cracking model, a new integrated model is introduced to investigate low temperature cracking performance. To evaluate its reliability and accuracy, the predicted thermally induced stress and failure temperature are compared with the fracture stress and fracture temperature obtained from thermal stress restrained specimen test. The findings indicate that this HMA fracture mechanics-based thermal cracking model has a great potential to reliably evaluate the performance of asphalt mixtures subjected to thermally induced damage.
39

THICKNESS VARIABILITY EFFECTS ON THE PROPERTIES OF UNSTABILIZED FULL DEPTH RECLAIMED AGGREGATES

Haque, Rizwana 14 March 2014 (has links)
Inadequate financial allocation for road maintenance is a threat to the impaired rural highways in Atlantic Canada. The conventional means of pavement rehabilitation has been to place a hot mix asphalt concrete overlay on the existing worn out pavement which is only a short term adjustment. The purpose is to provide a smooth wearing surface at a low cost. This traditional way of pavement repair does not fix the damage embedded within the pavement structure. After a certain extent of time the cracks in the original pavement start to reflect to the smooth new wearing surface, causing deterioration on the overlay. The advanced approach which is becoming more popular is the application of Full Depth Reclamation (FDR). This technique helps to repair the extensively defective roads by pulverizing the flexible pavement along with a fraction of the underlying damaged base layer. Thus a damage free base layer can be obtained by stabilizing and recompacting the pulverized materials. FDR is a sustainable and an environmentally beneficial repair method as it re-uses the in-situ materials. FDR process has been used around the world for over 25 years yet confronts some difficulties regarding the fluctuation in the strength of materials in various projects. It is inferred that some of these difficulties are due to the variability and poor quality in the restored materials. The variability in the recycled base layer is a result of currently utilizing a retroactive depth control method to attain a specific blend of asphalt concrete to granular base for the pulverized materials. Two FDR projects applying two different pulverization control methods (conventional retroactive and GPR depth control methods) were analyzed to investigate the improvements in consistency of the restored materials by using Ground Penetrating Radar (GPR). A wide range of asphalt concrete/base layer blend ratio was detected in retroactive control section, while consistent blend ratio was maintained in GPR survey by mapping the variability in the depth of pavement and sub-dividing the test sections accordingly. A GPR controlled constant blend ratio during pulverization displayed improvements in consistency of materials, physical and mechanical properties and performance as anticipated. The materials obtained by using the conventional retroactive depth control method exhibited higher variability in grain size distribution, optimum moisture content, optimum density, California Bearing Ratio, resilient modulus and shear strength. All materials from both projects exhibited excessive air voids and inadequate fines content as the as-obtained particles acted as conglomerated particles and enough fines were not generated after the pulverization. It is recommended that efficient quality control, precise specifications and appropriate pulverization methods will provide more reliable and impressive FDR pavements. / This thesis contains research on unstabilized full depth reclaimed aggregates properties
40

Designing Genomic Solutions for Abiotic Traits in Flax (Linum usitatissimum L.)

Khan, Nadeem 15 December 2022 (has links)
Flax (Linum usitatissimum L.) is a self-pollinated crop widely cultivated for fiber and oil production. Flaxseed is renowned for its health attributes but the presence of compounds, such as the heavy metal cadmium (Cd), is undesirable. Genomic studies in flax have produced large amounts of data in the last 15 years, providing useful resources to improve the genetic of this crop using genomics-based technologies and strategies. The goal of this thesis is therefore to capitalize on these advances to address the Cd problem and to propose solutions to improve breeding efficiencies. To find genomic-based solutions to Cd content, to the currently low breeding efficiency and to abiotic stress resistance in flax, this study utilized four major strategies: (1) genomic cross prediction, (2) gene family identification, (3) genome-wide association study (GWAS) and (4) genomic selection (GS). Characterization of the ATP-binding cassette (ABC) transporter and heavy metal associated (HMA) gene families was performed using the flax genome sequence. A total of 198 ABC transporter and 12 HMA genes were identified in the flax genome, of which nine were orthologous to Cd-associated genes in Arabidopsis, rice and maize. A transcriptomic analysis of eight tissues provided some support towards the functional annotation of these genes and confirmed the expression of these ABC transporter and HMA genes in flax seeds and other tissues. A diversity panel of 168 flax accessions was grown in the field at multiple locations and years and the seed content of 24 heavy metals (HMs) was measured. The panel was also sequenced and a single nucleotide polymorphism (SNP) dataset of nearly 43,000 SNPs was defined. A GWAS was conducted using these genotypic and phenotypic data and a total of 355 non-redundant quantitative trait nucleotides (QTNs) were identified for ten of the 24 metal contents. Overall, a total of 24 major and 331 minor effect QTNs were detected, including 11 that were pleiotropic. After allelic tests, 108 non-redundant QTNs were retained for eight of the ten metals and ranging from one for copper (Cu) to 70 for strontium (Sr). A total of 20 candidate genes for HM accumulation were identified at 12 of the 24 major QTN loci, of which five belonged to the ABC transporter family. Many of the metal contents, including Cd, appeared to be controlled by many genes of small effects; hence, GS is better suited than marker-assisted selection for application in breeding. To test this, predictive ability using ten GS statistical models was evaluated using trait-specific QTN and the random genome-wide 43K SNP datasets. Significantly higher predictive abilities were observed from the GS models built with the dataset made of QTNs associated with metal contents (70-80%) compared to that of the 43K dataset (10-25%). This study showed the feasibility of using GS to improve the predictive ability of polygenic traits such as metal content in seeds. GS can be applied in early generation selection to accelerate the improvement of abiotic stress resistance and either select low-Cd lines or discard high-Cd lines. These findings validate the use of a QTL-based strategy as a highly effective method for improving the efficiency of predictive ability of GS for highly complex traits such as resistance or tolerance to HM accumulation. Identification of both large and minor effect QTNs and/or pleiotropic effects hold potential for flax breeding improvement. Candidate gene functional validation can be performed using methods such as genome editing or targeting induced local lesions in genomes (TILLING).

Page generated in 0.0274 seconds