• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle d'une ATPase de type P4 dans l'homéostasie des glycérolipides membranaires chez Arabidopsis thaliana / Function of a P4-type ATPase in the homeostasis of membrane glycerolipids in Arabidopsis thaliana.

Botella, César 07 December 2016 (has links)
Dans les cellules eucaryotes, chaque membrane a une composition lipidique qui lui est propre. La composition des membranes est finement régulée en fonction des conditions environnementales et physiologiques de la plante. Cette homéostasie lipidique est le résultat des processus de synthèse, conversion, dégradation et de trafic des lipides. Si la majorité des enzymes impliqués dans le métabolisme des lipides est identifiée, la majorité des mécanismes de transferts intermembranaires des lipides reste à caractériser. Nous nous concentrons sur l'homéostasie lipidique des chloroplastes et plus particulièrement celle des galactolipides, lipides essentiels des membranes photosynthétiques. Les galactolipides sont synthétisés au niveau de l'enveloppe des chloroplastes. Cependant, une grande partie des galactolipides proviennent de la phosphatidylcholine, elle-même synthétisée dans le réticulum endoplasmique. Cette délocalisation de la voie de synthèse sur deux compartiments souligne l'importance de l’étape de transfert lipidique associé.Des études transcriptomiques ont montré qu'ALA10, une ATPase de type P4, flippase de phospholipides, est surexprimée dans des conditions faisant varier la synthèse des galactolipides, telles que l'inhibition chimique des MGDG synthases par la galvestine-1 ou la carence de phosphate.Le but de cette thèse est de caractériser ALA10 et d'analyser son rôle dans ce trafic lipidique et dans l’homéostasie des galactolipides chloroplastiques.Pour comprendre le rôle d'ALA10, nous avons d'abord étudié sa localisation subcellulaire à l'aide d'une fusion traductionnelle avec la GFP et effectué des analyses lipidiques de différentes lignées exprimant ALA10 à différents niveaux. L’analyse de la composition lipidique indique qu'ALA10 stimule la synthèse des galactolipides et limite la désaturation de la phosphatidylcholine dans le réticulum endoplasmique. Nous avons recherché les partenaires protéiques potentiels d'ALA10 permettant d'expliquer ces effets et utilisé une approche de complémentation de fluorescence bimoléculaire afin d'étudier ces interactions. Nous avons pu déterminer qu'ALA10 interagit avec ALIS1 et ALIS5, deux sous-unités beta potentiellement nécessaires à la localisation et à la fonction d'ALA10, et confirmer leurs colocalisation avec ALA10 à l'aide de fusions GFP/CFP. ALA10 peut être localisée dans le réticulum endoplasmique à proximité des chloroplastes avec ALIS5 ou au niveau de la membrane plasmique avec ALIS1. Nous avons aussi pu déterminer qu'ALA10 interagit avec l’acide gras désaturase, FAD2, et une E3-ubiquitine ligase, PUB11. L''interaction avec FAD2 confirme un lien entre ALA10 et la désaturation de la phosphatidylcholine.Nous avons ensuite étudié l'effet d'ALIS1 et d'ALIS5 sur la fonction d'ALA10 en utilisant des lignées n’exprimant pas ces protéines ou les surexprimant avec ALA10. L'observation en microscopie électronique a révélé que la forme des chloroplastes et leurs relations avec le système endomembranaire sont modifiées en fonction de l'ALIS coexprimée avec ALA10. Les analyses lipidiques effectuées sur les plantes mutantes confirment un effet d’ALA10 sur l’homéostasie des galactolipides et la désaturation de la phosphatidylcholine. Les résultats suggèrent plusieurs fonctions d'ALA10, dépendantes de l’ALIS. Cet effet apparait variable en fonction de la photopériode ou du rythme circadien et indiquent une régulation post traductionnelle d'ALA10. Le rôle de PUB11 dans cette régulation a été exploré.Au final, cette étude révèle que, dans les cellules chlorophylliennes, ALA10, une flippase de phospholipides du réticulum endoplasmique, est impliquée dans la dynamique de désaturation de la phosphatidylcholine. Son activité stimule la synthèse des galactolipides et active la biogénèse des membranes photosynthétiques, probablement, en favorisant les échanges de lipides entre le chloroplaste et le réticulum endoplasmique. / In a eukaryotic cell, each membrane compartment has a specific lipid composition, regulated according to physiological and environmental conditions. This lipid homeostasis results from coordination of lipid synthesis, conversion, degradation and trafficking. Whereas most enzymes involved in lipid metabolism are now identified, most steps of lipid transport remain to be characterized. We focus on the chloroplast lipid homeostasis, particularly on galactolipid homeostasis, essential lipids of photosynthetic membranes. This lipids are synthetized within the chloroplast's envelope. However, a majority of galactolipids derived from phosphatidylcholine which is synthetized in the endoplasmic reticulum. The delocalization of this synthesis pathway underline the importance of the associated lipid trafficking.Transcriptomic studies have highlighted that ALA10 is overexpressed in condition modifying the galactolipids synthesis such as the chemical inhibition of MGDG synthesis by the galvestine-1, or during phosphate starvation.The aim of this thesis is to characterize ALA10, analyzing its role concerning this lipid trafficking and the chloroplastic galactolipid homeostasis.To understand ALA10's role, we firstly have used GFP fusion to determine its subcellular localization and analyzed lipid composition of different plant lines expressing ALA10 at different levels. Lipid analysis show that ALA10 boosts galactolipid synthesis and limits endoplasmic reticulum located phosphatidylcholine desaturation. We searched ALA10's potential partners in order to explain this effects and studied their interaction using a bimolecular fluorescence complementation approach. We determined that ALA10 interacts with ALIS1 and ALIS5, two beta subunit potentially necessary for ALA10's localization and function, and confirmed the colocalization of these proteins with ALA10 using GFP/CFP fusions. ALA10 with ALIS5 can localize within the endoplasmic reticulum in close proximity to chloroplast, or near the plasma membrane with ALIS1. We have also determined that ALA10 interacts with a fatty acid desaturase, FAD2 and with an E3-ubiquitine ligase PUB11. FAD2 interaction confirms the link between ALA10 and phosphatidylcholine desaturation.Then we have studied the ALIS1 and ALIS5 effect on ALA10 function using KO lines for these proteins or overexpressor lines in conjunction with ALA10 overexpression. Electron microscopy observation revealed that the chloroplast morphology and their relations with endomembrane system are modified depending of the ALIS expressed with ALA10. Lipid analysis on KO lines confirms an impact of ALA10 on galactolipids homeostasis as well as in phosphatidylcholine desaturation. This effect appears to be variable depending of the photoperiod or the circadian rhythm indicating a post traductional regulation of ALA10. The role of PUB11 in this regulation have been studied.Finally this study reveal that, in chlorophyll cells, the endoplasmic reticulum phospholipid flippase ALA10 is involved in the desaturation process of phosphatidylcholine. Its activity stimulates galactolipid synthesis and activates biogenesis of photosynthetic membranes, probably by promoting lipids exchange between chloroplasts and endoplasmic reticulum.
2

Phospholipid Flippase Activity and Cellular Function of Class 5 P4-ATPases / クラス5 P4-ATPaseのリン脂質フリッパーゼ活性と細胞内での機能

Naito, Tomoki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬科学) / 甲第20305号 / 薬科博第74号 / 新制||薬科||8(附属図書館) / 京都大学大学院薬学研究科薬科学専攻 / (主査)教授 中山 和久, 教授 竹島 浩, 教授 根岸 学 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
3

Étude structurale et fonctionnelle d’un transporteur de lipides « une flippase » de la levure S. cerevisiae : l’ATPase P4 Drs2p et sa sous unité-associée Cdc50p / Structural and functional characterization of the yeast Drs2p/Cdc50p “lipid flippase” complex

Azouaoui, Hassina 28 September 2016 (has links)
Les ATPases-P4 sont des transporteurs membranaires couplant l'hydrolyse de l'ATP au transport de lipides dans les membranes cellulaires eucaryotes. Avec leurs partenaires, les protéines CDC50, les ATPases-P4 transportent les phospholipides, en particulier la phosphatidylsérine (PS) et la phosphatidyléthanolamine (PE), du feuillet exoplasmique au feuillet cytosolique des membranes, assurant ainsi le maintien de l'asymétrie membranaire.Drs2p est l'une des cinq ATPases-P4 de la levure Saccharomyces cerevisiae. Elle est localisée dans les membranes du trans-Golgi (TGN), et elle a comme partenaire la protéine Cdc50p, qui est nécessaire à l'adressage correct et probablement au transport catalysé par Drs2p. Drs2p est principalement responsable du transport de la phosphatidylsérine (PS) dans les membranes du TGN et son activité est essentielle pour le maintien de la PS dans le feuillet cytosolique de ces membranes. En raison du rôle crucial de la PS dans de nombreuses voies de signalisation, aussi bien à l’extérieur (au cours de l’apoptose par exemple) qu’à l’intérieur de la cellule (par le recrutement de protéines impliquées dans des processus cellulaires essentiels), il est important de comprendre le mécanisme par lequel l’asymétrie de la PS est établie.Afin de progresser dans la compréhension du mécanisme moléculaire du transport de lipides, nous avons mis au point une procédure qui nous a permis de co-exprimer Drs2p et Cdc50p dans Saccharomyces cerevisiae. La purification de Drs2p par chromatographie d'affinité sur résine streptavidine a permis d'obtenir une fraction purifiée contenant très majoritairement Drs2p et Cdc50p, à raison de 1-2 mg/L de culture. Les deux protéines sont sous forme de complexe avec une stœchiométrie d'association de 1:1. Le complexe purifié est fonctionnel, et présente une activité d’hydrolyse de l’ATP stimulée par son substrat, la PS. Cette stimulation n’est cependant possible qu’en présence de PI4P, un phosphoinositide impliqué dans la régulation du trafic membranaire.De par leur rôle crucial dans le maintien de l'asymétrie membranaire, les ATPases-P4 ne peuvent qu'être régulées. Comme de nombreuses ATPases de type P sont soumises à une auto-régulation de leur activité, nous avons examiné la possibilité d’une telle auto-régulation dans le cas des ATPases P4. Pour ce faire, une approche par mutagenèse dirigée et protéolyse ménagée associée à l’identification par spectrométrie de masse des peptides ont été effectuées. La protéolyse ménagée du complexe purifié Drs2p/Cdc50p montre une activité ATPasique dépendante au PI4P de 30-50 fois plus importante. La protéolyse par la thrombine engendre un Drs2p dépourvu d'une partie N-terminale (R104) et d'une partie C-terminale (R1290) qui reste toujours associé à Cdc50p. Ce résultat montre qu'une coupure appropriée au niveau des extrémités terminales de Drs2p peut augmenter de façon significative, en présence du PI4P, l'activité ATPasique du complexe, nous amenant ainsi à identifier un rôle auto-inhibiteur des extrémités N- et/ou C-terminales de Drs2p.Ce travail ouvre des perspectives quant à la caractérisation structurale et fonctionnelle du mécanisme de transport de lipides par le complexe. Par ailleurs, il laisse entrevoir la possibilité d’étudier les bases moléculaires des pathologies associées aux mutations de certaines ATPases P4 humaines. / Maintenance of phospholipid asymmetry in eukaryotic cell membranes is essential for cellular integrity and function. P4-ATPases, from the P-type ATPases family, are energy-dependent transporters, together with their CDC50 accessory subunits couple ATP hydrolysis to lipid transport from the exoplasmic to cytoplasmic leaflet to maintain membrane asymmetry.Drs2p is one of these P4-ATPases in the yeast Saccharomyces cerevisiae. Drs2p is localised in trans-Golgi (TGN) membranes in association with its binding partner Cdc50p, which contributes to the correct addressing of Drs2p and probably in the catalyzed transport by Drs2p. Drs2p transport principally phosphatidylserine (PS) in TGN membranes. The PS is important for a several signalling pathways, for example, in apoptosis and recruitment of the proteins implied in various essential cellular process, so, it's very important to understand the mechanism that establishes this asymmetry.To gain in comprehension of molecular mechanism of lipid transport, robust protocols for expression and purification are required. In this work, we present a procedure for high-yield co-expression of Drs2p and Cdc50p. The purification of Drs2p and Cdc50p is achieved in a single step by affinity chromatography on streptavidin beads, yielding, 1-2 mg purified Drs2p/Cdc50p per liter of culture. This procedure allows purification of the complex Drs2p/Cdc50p with stoichiometry to 1:1. Our complex is functional, overal ATP hydrolysis by the complex is dependent of PS, favourite substrate of Drs2p. This hydrolyze is critically dependent on the presence of PI4P, a phosphoinositide involved in regulation of membrane trafficking.Like many P-type ATPases auto-regulate their activity, we examined the possibility that P4-ATPases are auto-regulated. In this work, we use directed mutagenesis and limited proteolysis associated with mass spectrometry for identify peptides. We show that limited proteolysis of a purified complex Drs2p/Cdc50p resulted in up to a 30-50 fold increase of it ATPase activity, which however remained dependent on PI4P. Using thrombin as the protease, Cdc50p remained intact and in complex with Drs2p, which was cleaved at two positions, namely after R104 and after R1290. Our results therefore reveal that trimming off appropriate regions of the terminal extensions of Drs2p can increase its ATPase activity in the presence of PI4P by an enormous factor, thereby identifying a role of N and/or C-terminal extensions in auto-inhibition of Drs2p.Our results open perspectives on the structural and the functional characterization of the lipid transport mechanism by the complex Drs2p/Cdc50p. Furthermore, our procedures open up the possibility of studying the molecular bases of the pathologies associated with the mutations of human P4-ATPases.

Page generated in 0.0628 seconds