• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 3
  • Tagged with
  • 11
  • 11
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of flocs analysis for coagulation optimization at the Split Lake water treatment plant

Geng, Yi 06 January 2006 (has links)
The success of surface water treatment strongly depends on the effectiveness of coagulant performance. Aluminium sulfate (alum), the most widely used coagulant in water treatment plants in Canada, is well known for its poor performance in cold water. Polyaluminium chloride (PACl), a relatively new polymeric aluminium coagulant increasingly being used in water treatment plants, is found to have many advantages over conventional alum. However, PACl hydrolysis reaction is quite complex and its action is not fully understood. In this research, a series of bench-scale jar tests with alum and PACl was conducted. Alum and PACl coagulation flocs were analyzed for the evaluation of coagulant performances at 19C and 5C for the Split Lake water treatment plant. The results of this research indicated that the settling properties of PACl flocs were superior to those of alum flocs, especially at the lower temperature. The average size of PACl flocs was relatively smaller than that of alum flocs. The density of PACl flocs could be higher than that of alum flocs. And the number of settled PACl flocs could be higher than that of settled alum flocs. The effects of temperature on alum flocs and PACl flocs were different. Alum flocs size decreased at 5C. This is most likely due to the existence of monomeric aluminium species in alum aqueous solution. PACl flocs size did not change significantly at the 5C. This may be due to the existence of polymeric aluminium species in PACl aqueous solution. / February 2006
2

Application of flocs analysis for coagulation optimization at the Split Lake water treatment plant

Geng, Yi 06 January 2006 (has links)
The success of surface water treatment strongly depends on the effectiveness of coagulant performance. Aluminium sulfate (alum), the most widely used coagulant in water treatment plants in Canada, is well known for its poor performance in cold water. Polyaluminium chloride (PACl), a relatively new polymeric aluminium coagulant increasingly being used in water treatment plants, is found to have many advantages over conventional alum. However, PACl hydrolysis reaction is quite complex and its action is not fully understood. In this research, a series of bench-scale jar tests with alum and PACl was conducted. Alum and PACl coagulation flocs were analyzed for the evaluation of coagulant performances at 19C and 5C for the Split Lake water treatment plant. The results of this research indicated that the settling properties of PACl flocs were superior to those of alum flocs, especially at the lower temperature. The average size of PACl flocs was relatively smaller than that of alum flocs. The density of PACl flocs could be higher than that of alum flocs. And the number of settled PACl flocs could be higher than that of settled alum flocs. The effects of temperature on alum flocs and PACl flocs were different. Alum flocs size decreased at 5C. This is most likely due to the existence of monomeric aluminium species in alum aqueous solution. PACl flocs size did not change significantly at the 5C. This may be due to the existence of polymeric aluminium species in PACl aqueous solution.
3

Application of flocs analysis for coagulation optimization at the Split Lake water treatment plant

Geng, Yi 06 January 2006 (has links)
The success of surface water treatment strongly depends on the effectiveness of coagulant performance. Aluminium sulfate (alum), the most widely used coagulant in water treatment plants in Canada, is well known for its poor performance in cold water. Polyaluminium chloride (PACl), a relatively new polymeric aluminium coagulant increasingly being used in water treatment plants, is found to have many advantages over conventional alum. However, PACl hydrolysis reaction is quite complex and its action is not fully understood. In this research, a series of bench-scale jar tests with alum and PACl was conducted. Alum and PACl coagulation flocs were analyzed for the evaluation of coagulant performances at 19C and 5C for the Split Lake water treatment plant. The results of this research indicated that the settling properties of PACl flocs were superior to those of alum flocs, especially at the lower temperature. The average size of PACl flocs was relatively smaller than that of alum flocs. The density of PACl flocs could be higher than that of alum flocs. And the number of settled PACl flocs could be higher than that of settled alum flocs. The effects of temperature on alum flocs and PACl flocs were different. Alum flocs size decreased at 5C. This is most likely due to the existence of monomeric aluminium species in alum aqueous solution. PACl flocs size did not change significantly at the 5C. This may be due to the existence of polymeric aluminium species in PACl aqueous solution.
4

Investigation of the Effects of Coagulation on Membrane Filtration of Moving Bed Biofilm Reactor Effluent

Pervissian, Atehna 18 May 2010 (has links)
The combination of moving bed biofilm reactors and membrane bioreactors (MBBR-MR) can compensate for the drawbacks of both of these systems and further increase their acceptance and application in wastewater treatment industries. Despite the potential benefits of a MBBR-MR technology there has only been limited study of this configuration. The present study consisted of an overall assessment of the performance of a combined MBBR-MR system under high and low loading rates. Since colloidal matter in mixed liquor suspended solid (MLSS) is considered as one of the important contributors to membrane fouling, pre-treatment of membrane feed by coagulation was investigated for improving membrane performance. The performance of the MBBR-MR was assessed based on its chemical oxygen demand (COD) removal efficiency and membrane fouling mechanisms. The study was carried out using pilot-scale MBBR and bench-scale batch membrane filtration setups (Millipore Inc. Bedford, MA). The pilot MBBR had a working volume of 1.8 m3 and a 30% carrier fill fraction. The MBBR was operated with loading rates of 160 ± 44 g/m2/d (hydraulic residence time (HRT) of 4.6 h) and 223 g/m2/d (HRT of 2.6 h). The MBBR feed was obtained from a starch recovery line in a potato chip processing factory. The carriers were mixed by coarse bubble aeration and the dissolved oxygen (DO) was maintained above 2 mg/l. Preliminary jar test trials (based on turbidity removal) were performed in order to obtain an optimal dosage of coagulants for subsequent ultrafiltration (UF) tests. The efficiency of three coagulants (alum, ferric chloride and a blend of polyaluminum chloride and polyamine) was evaluated. The membranes were composed of polyethersulfone (PES) and had a pore size of 0.05 microns. The results of this study indicate that the combination of MBBR with membrane filtration can be operated at relatively high loading rates to yield a constant high quality permeate that is suitable for water reuse purposes. Fouling of the membrane by the wastewater was found to be substantially reduced by treatment with the MBBR. The reversible and irreversible fouling of the MBBR effluent were 56 and 63%, respectively, of that observed with the raw wastewater. The MBBR Loading-rate was found to affect treatment efficiency of the MBBR-MR and membrane performance. Operation under the elevated loading-rate conditions HRT = 2.6 hours) resulted in an increase in the irreversible fouling of the membranes (60% on average). The addition of all the coagulants in this study was found to decrease the fouling of the membrane. However, the extent of the pre-coagulation effect on membrane fouling was found to strongly depend on the type and dosage of the coagulant and the MBBR effluent characteristics. All the coagulants were effective in decreasing membrane fouling at their optimal dosages which was determined in preliminary jar tests. Ferric chloride performed the best as a pretreatment coagulant compared to alum (Aluminum sulfate) and the coagulant blend with reductions in both reversible and irreversible fouling (43-86% and 51-71%, respectively) and increased consistency (in decreasing fouling) as compared to the other coagulants. Alum had no effect on irreversible fouling and the coagulant blend significantly increased irreversible fouling in some trials (up to 196% or by a factor of 3 when overdosed). Additionally, alum and the blend were, on average, 29% and 7%, less effective than ferric chloride in reducing reversible fouling under the conditions and dosages tested.
5

Investigation of the Effects of Coagulation on Membrane Filtration of Moving Bed Biofilm Reactor Effluent

Pervissian, Atehna 18 May 2010 (has links)
The combination of moving bed biofilm reactors and membrane bioreactors (MBBR-MR) can compensate for the drawbacks of both of these systems and further increase their acceptance and application in wastewater treatment industries. Despite the potential benefits of a MBBR-MR technology there has only been limited study of this configuration. The present study consisted of an overall assessment of the performance of a combined MBBR-MR system under high and low loading rates. Since colloidal matter in mixed liquor suspended solid (MLSS) is considered as one of the important contributors to membrane fouling, pre-treatment of membrane feed by coagulation was investigated for improving membrane performance. The performance of the MBBR-MR was assessed based on its chemical oxygen demand (COD) removal efficiency and membrane fouling mechanisms. The study was carried out using pilot-scale MBBR and bench-scale batch membrane filtration setups (Millipore Inc. Bedford, MA). The pilot MBBR had a working volume of 1.8 m3 and a 30% carrier fill fraction. The MBBR was operated with loading rates of 160 ± 44 g/m2/d (hydraulic residence time (HRT) of 4.6 h) and 223 g/m2/d (HRT of 2.6 h). The MBBR feed was obtained from a starch recovery line in a potato chip processing factory. The carriers were mixed by coarse bubble aeration and the dissolved oxygen (DO) was maintained above 2 mg/l. Preliminary jar test trials (based on turbidity removal) were performed in order to obtain an optimal dosage of coagulants for subsequent ultrafiltration (UF) tests. The efficiency of three coagulants (alum, ferric chloride and a blend of polyaluminum chloride and polyamine) was evaluated. The membranes were composed of polyethersulfone (PES) and had a pore size of 0.05 microns. The results of this study indicate that the combination of MBBR with membrane filtration can be operated at relatively high loading rates to yield a constant high quality permeate that is suitable for water reuse purposes. Fouling of the membrane by the wastewater was found to be substantially reduced by treatment with the MBBR. The reversible and irreversible fouling of the MBBR effluent were 56 and 63%, respectively, of that observed with the raw wastewater. The MBBR Loading-rate was found to affect treatment efficiency of the MBBR-MR and membrane performance. Operation under the elevated loading-rate conditions HRT = 2.6 hours) resulted in an increase in the irreversible fouling of the membranes (60% on average). The addition of all the coagulants in this study was found to decrease the fouling of the membrane. However, the extent of the pre-coagulation effect on membrane fouling was found to strongly depend on the type and dosage of the coagulant and the MBBR effluent characteristics. All the coagulants were effective in decreasing membrane fouling at their optimal dosages which was determined in preliminary jar tests. Ferric chloride performed the best as a pretreatment coagulant compared to alum (Aluminum sulfate) and the coagulant blend with reductions in both reversible and irreversible fouling (43-86% and 51-71%, respectively) and increased consistency (in decreasing fouling) as compared to the other coagulants. Alum had no effect on irreversible fouling and the coagulant blend significantly increased irreversible fouling in some trials (up to 196% or by a factor of 3 when overdosed). Additionally, alum and the blend were, on average, 29% and 7%, less effective than ferric chloride in reducing reversible fouling under the conditions and dosages tested.
6

Avaliação de diversos métodos de detecção de cistos de Giardia spp. e Oocistos de Cryptosporidium parvum presentes no resíduo gerado após o tratamento de água de abastecimento com turbidez elevada / Evaluation of several methods for the detection of Giardia spp. cysts and Cryptosporidium parvum Oocysts in wastes produced after high- turbidity water treatment

Giglio, Guilherme Lelis 24 August 2015 (has links)
Este trabalho teve como objetivo avaliar diversos métodos de detecção e recuperação de cistos de Giardia spp. e de oocistos de Cryptosporidium parvum em resíduos gerados no tratamento de águas de abastecimento com turbidez elevada tendo como padrão o Método 1623.1 da USEPA (2012 ). Para tanto, ensaios utilizando aparelho Jarteste (coagulação, floculação, decantação e filtração ) foram realizados utilizando o coagulante cloreto de polialumínio - PAC. Em todos os métodos avaliados foi utilizada a técnica de purificação por separação imunomagnética - IMS. A adaptação do método floculação em carbonato de cálcio FCCa elaborado por Vesey et al. (1993) e adaptado por Feng et al. (2011), repercutiu nos melhores resultados para a amostra de resíduo sedimentado, com recuperações de 68 ± 17 % para oocisto de C. parvum e de 42 ± 7 % para cisto de Giardia spp. Entretanto, as recuperações para a amostra de água de lavagem dos filtros - ALF foram inferiores à 1 %, não sendo possível determinar um método adequado. A presença dos patógenos indica que o reuso da ALF em ETA convencionais ou o descarte em mananciais sem um tratamento prévio, pode representar problemas de contaminação. A adaptação dos métodos de Boni de Oliveira (2012) e Keegan et al. (2008), também repercutiram em porcentagens de recuperação expressivas para a amostra de resíduo sedimentado, sendo de: 41 ± 35 % para oocisto de C. parvum e 11 ± 70 % para cisto de Giardia spp., e 38 ± 26 % para oocisto de C. parvum e 26 ± 13 % para cisto de Giardia spp., respectivamente. A análise estatística não resultou em diferença significativa entre estes dois métodos, entretanto, as elevadas recuperações indicam que estes métodos podem ser melhor avaliados em pesquisas futuras. / This dissertation addresses the evaluation of several methods for the detection of Giardia spp. cysts and Cryptosporidium parvum oocysts in wastes produced after a high-turbidity water treatment, according to Method 1623.1 from USEPA (2012). Coagulant polyaluminium chloride - PACl was used in jar test experiments (coagulation/flocculation, sedimentation and filtration ). The Immunomagnetic Separation - IMS technique was applied to all methods. The calcium carbonate flocculation (CCF) method, developed by Vesey et al. (1993) and adapted by Feng et al. (2011 ), was applied to sludge samples in this research and was the best method tested, with 68% ± 17 % and 42 % ± 7,00 % recoveries for C. parvum oocysts and Giardia spp. cysts, respectively. On the other hand, the percentage recovery of (oo)cysts for filter backwash water samples was lower than 1 % and no suitable method could be detected. The presence of pathogens represents contamination risks for water sources and the reuse of filter backwash water may be a problem to conventional water treatment plants. The application of Boni de Oliveira (2012) and Keegan et al. (2008) methods, adjusted to this study, also resulted in significant percentage recoveries for the sludge samples, with 41 ± 35 % for C. parvum oocyst and 11 ± 70% for cyst Giardia spp., and 38 ± 26% for oocyst C. parvum and 26 ± 13% for cyst Giardia spp., respectively. The statistical analysis showed no significant differences between the two methods, however, such high recoveries indicate they should be better evaluated in future research.
7

Remoção de Giardia spp. e Cryptosporidium spp. em águas de abastecimento com turbidez elevada utilizando cloreto de polialumínio: estudo em escala de bancada e desafios analíticos / Giardia spp. Cysts and Cryptosporidium spp. Oocysts removal in high turbid drinking water using polyaluminum chloride: a bench scale study and analytical challenges

Maciel, Paulo Marcos Faria 22 August 2014 (has links)
O objetivo deste trabalho foi avaliar o desempenho da remoção de cistos deGiardia spp. e oocistos de Cryptosporidium parvum, em águas de abastecimento com turbidez elevada, em experimentos em escala de bancada (coagulação, floculação, decantação e filtração). Para tanto, empregou-se o coagulante cloreto de polialumínio – PAC. O método de filtração em membranas foi adotado para a concentração de protozoários, seguido ou não da etapa de purificação por separação imunomagnética – IMS. Os métodos foram avaliados em experimentos de controle de qualidade analítica e o método sem IMS apresentou as seguintes porcentagens de recuperação, 80% ±16,32% para cistos de Giardia spp. e 5% ±10,00% para oocistos de C. parvum. O método com IMS apresentou 31,5%±7,55% de recuperação para cistos de Giardia spp. e 5,75%±3,20% de recuperação para oocistos de C. parvum. Os experimentos demonstraram que não houve melhora na remoção de ambos os protozoários na condição de maior dosagem de coagulante (65 mg.L-1 de PAC e pH 7,29). A condição de menor dosagem de coagulante (25 mg.L-1 de PAC e pH 6,76) apresentou um desempenho melhor, ao contrário de uma expectativa de que a maior dosagem de coagulante pudesse favorecer a remoção destes microrganismos. A condição de menor dosagem apresentou, na água filtrada, 50 e 75% de ausência de identificação de cistos de Giardia e oocistos de C. parvum, respectivamente. A condição de maior dosagem apresentou (oo)cistos na água filtrada de todas amostras analisadas. Estes resultados indicam a importância do controle da coagulação na remoção de protozoários. / The aim of this study was to evaluate the performance of Giardia spp. cysts and Cryptosporidium parvum oocysts removal in a bench scale experiment. The coagulant polyaluminium chloride – PACl was used in this research. The protozoa concentration tests were performed by applying the Membrane Filtration method, with and without Immunomagnetic Separation assay-IMS. The methods were evaluated using control experiments and the method without IMS had the following percentage recovery, 80% ± 16.32% and 5% ±10.00% for Giardia cysts and C. parvum oocysts, respectively. The method with IMS presented 31.5% ± 7.55% and 5.75% ± 3.20% of percentage recovery for Giardia cysts and C. parvum oocysts, respectively. Bench scale experimental results have clearly shown that there was no improvement in protozoa removal using the superior dosage of coagulant. The inferior dosage condition (25 mg.L-1 of PACl and pH 6,76) performed better, which was contrary to what was expected in which a superior dosage of coagulant could favour when removing microorganisms. The inferior dosage condition presented 50% and 75% of absence of Giardia cysts and C. parvum oocysts in the final water, respectively. The second coagulation condition (65 mg.L-1 of PACl and pH 7,29) presented protozoa (oo)cysts in the final water of all the samples examined. These results indicate the importance of coagulation control in protozoa removal.
8

Avaliação de diversos métodos de detecção de cistos de Giardia spp. e Oocistos de Cryptosporidium parvum presentes no resíduo gerado após o tratamento de água de abastecimento com turbidez elevada / Evaluation of several methods for the detection of Giardia spp. cysts and Cryptosporidium parvum Oocysts in wastes produced after high- turbidity water treatment

Guilherme Lelis Giglio 24 August 2015 (has links)
Este trabalho teve como objetivo avaliar diversos métodos de detecção e recuperação de cistos de Giardia spp. e de oocistos de Cryptosporidium parvum em resíduos gerados no tratamento de águas de abastecimento com turbidez elevada tendo como padrão o Método 1623.1 da USEPA (2012 ). Para tanto, ensaios utilizando aparelho Jarteste (coagulação, floculação, decantação e filtração ) foram realizados utilizando o coagulante cloreto de polialumínio - PAC. Em todos os métodos avaliados foi utilizada a técnica de purificação por separação imunomagnética - IMS. A adaptação do método floculação em carbonato de cálcio FCCa elaborado por Vesey et al. (1993) e adaptado por Feng et al. (2011), repercutiu nos melhores resultados para a amostra de resíduo sedimentado, com recuperações de 68 ± 17 % para oocisto de C. parvum e de 42 ± 7 % para cisto de Giardia spp. Entretanto, as recuperações para a amostra de água de lavagem dos filtros - ALF foram inferiores à 1 %, não sendo possível determinar um método adequado. A presença dos patógenos indica que o reuso da ALF em ETA convencionais ou o descarte em mananciais sem um tratamento prévio, pode representar problemas de contaminação. A adaptação dos métodos de Boni de Oliveira (2012) e Keegan et al. (2008), também repercutiram em porcentagens de recuperação expressivas para a amostra de resíduo sedimentado, sendo de: 41 ± 35 % para oocisto de C. parvum e 11 ± 70 % para cisto de Giardia spp., e 38 ± 26 % para oocisto de C. parvum e 26 ± 13 % para cisto de Giardia spp., respectivamente. A análise estatística não resultou em diferença significativa entre estes dois métodos, entretanto, as elevadas recuperações indicam que estes métodos podem ser melhor avaliados em pesquisas futuras. / This dissertation addresses the evaluation of several methods for the detection of Giardia spp. cysts and Cryptosporidium parvum oocysts in wastes produced after a high-turbidity water treatment, according to Method 1623.1 from USEPA (2012). Coagulant polyaluminium chloride - PACl was used in jar test experiments (coagulation/flocculation, sedimentation and filtration ). The Immunomagnetic Separation - IMS technique was applied to all methods. The calcium carbonate flocculation (CCF) method, developed by Vesey et al. (1993) and adapted by Feng et al. (2011 ), was applied to sludge samples in this research and was the best method tested, with 68% ± 17 % and 42 % ± 7,00 % recoveries for C. parvum oocysts and Giardia spp. cysts, respectively. On the other hand, the percentage recovery of (oo)cysts for filter backwash water samples was lower than 1 % and no suitable method could be detected. The presence of pathogens represents contamination risks for water sources and the reuse of filter backwash water may be a problem to conventional water treatment plants. The application of Boni de Oliveira (2012) and Keegan et al. (2008) methods, adjusted to this study, also resulted in significant percentage recoveries for the sludge samples, with 41 ± 35 % for C. parvum oocyst and 11 ± 70% for cyst Giardia spp., and 38 ± 26% for oocyst C. parvum and 26 ± 13% for cyst Giardia spp., respectively. The statistical analysis showed no significant differences between the two methods, however, such high recoveries indicate they should be better evaluated in future research.
9

Remoção de Giardia spp. e Cryptosporidium spp. em águas de abastecimento com turbidez elevada utilizando cloreto de polialumínio: estudo em escala de bancada e desafios analíticos / Giardia spp. Cysts and Cryptosporidium spp. Oocysts removal in high turbid drinking water using polyaluminum chloride: a bench scale study and analytical challenges

Paulo Marcos Faria Maciel 22 August 2014 (has links)
O objetivo deste trabalho foi avaliar o desempenho da remoção de cistos deGiardia spp. e oocistos de Cryptosporidium parvum, em águas de abastecimento com turbidez elevada, em experimentos em escala de bancada (coagulação, floculação, decantação e filtração). Para tanto, empregou-se o coagulante cloreto de polialumínio – PAC. O método de filtração em membranas foi adotado para a concentração de protozoários, seguido ou não da etapa de purificação por separação imunomagnética – IMS. Os métodos foram avaliados em experimentos de controle de qualidade analítica e o método sem IMS apresentou as seguintes porcentagens de recuperação, 80% ±16,32% para cistos de Giardia spp. e 5% ±10,00% para oocistos de C. parvum. O método com IMS apresentou 31,5%±7,55% de recuperação para cistos de Giardia spp. e 5,75%±3,20% de recuperação para oocistos de C. parvum. Os experimentos demonstraram que não houve melhora na remoção de ambos os protozoários na condição de maior dosagem de coagulante (65 mg.L-1 de PAC e pH 7,29). A condição de menor dosagem de coagulante (25 mg.L-1 de PAC e pH 6,76) apresentou um desempenho melhor, ao contrário de uma expectativa de que a maior dosagem de coagulante pudesse favorecer a remoção destes microrganismos. A condição de menor dosagem apresentou, na água filtrada, 50 e 75% de ausência de identificação de cistos de Giardia e oocistos de C. parvum, respectivamente. A condição de maior dosagem apresentou (oo)cistos na água filtrada de todas amostras analisadas. Estes resultados indicam a importância do controle da coagulação na remoção de protozoários. / The aim of this study was to evaluate the performance of Giardia spp. cysts and Cryptosporidium parvum oocysts removal in a bench scale experiment. The coagulant polyaluminium chloride – PACl was used in this research. The protozoa concentration tests were performed by applying the Membrane Filtration method, with and without Immunomagnetic Separation assay-IMS. The methods were evaluated using control experiments and the method without IMS had the following percentage recovery, 80% ± 16.32% and 5% ±10.00% for Giardia cysts and C. parvum oocysts, respectively. The method with IMS presented 31.5% ± 7.55% and 5.75% ± 3.20% of percentage recovery for Giardia cysts and C. parvum oocysts, respectively. Bench scale experimental results have clearly shown that there was no improvement in protozoa removal using the superior dosage of coagulant. The inferior dosage condition (25 mg.L-1 of PACl and pH 6,76) performed better, which was contrary to what was expected in which a superior dosage of coagulant could favour when removing microorganisms. The inferior dosage condition presented 50% and 75% of absence of Giardia cysts and C. parvum oocysts in the final water, respectively. The second coagulation condition (65 mg.L-1 of PACl and pH 7,29) presented protozoa (oo)cysts in the final water of all the samples examined. These results indicate the importance of coagulation control in protozoa removal.
10

The Effect of Selected Coagulants on Chloride-to-Sulfate Mass Ratio for Lead Control and on Organics Removal in Two Source Waters

El Henawy, Walid January 2009 (has links)
Lead is a known toxin, with the ability to accumulate in the human body from as early as fetal development. Lead exposure is known to cause a myriad of health effects which are more prominent among children. Health effects upon exposure can range from renal and heart disease or potentially cancer in adults to neurotoxicity in children. The continued presence of old lead service lines and plumbing in distribution systems as well as lead-containing solders and brass fixtures in homes may contribute lead to drinking water. Recent studies have highlighted the importance of a predictor known as the chloride-to-sulfate mass ratio (CSMR) in controlling lead release. A ratio above 0.5 – 0.6 theoretically increases the aggressiveness of lead leaching in galvanic settings, while a lower ratio controls lead corrosion. A switch in coagulant type could significantly alter the ratio. However, a coagulant switch could also trigger changes in finished water turbidity and organics, including disinfection by-product (DBP) precursors, as well as impact sludge production. Anecdotal evidence from an Ontario water treatment utility suggested the potential applicability of a newly formulated polymer, cationic activated silica (CAS), in improving DBP precursor removal when used in concurrence with a primary coagulant. No previous scientific research had been dedicated to testing of the polymer. The present research had three primary objectives: The first was to investigate the effect of conventional coagulation with six different coagulants on the chloride-to-sulfate mass ratio as it pertains to lead corrosion in two Ontario source waters of differing quality. Additionally, the effect of coagulant choice on pH, turbidity, and organics removal was investigated. The second objective was aimed at testing potential reductions in CSMR and organics that could be brought about by the use of two polymers, cationic and anionic activated silica (CAS and AAS, respectively), as flocculant aids. Finally, the performance of a high-rate sand-ballasted clarification process was simulated at bench-scale to gauge its performance in comparison with conventional coagulation simulation techniques. The first series of jar-tests investigated the effectiveness of CAS as a primary coagulant on Lake Ontario water. In comparison with the conventional coagulants aluminum sulfate and polyaluminum chloride, CAS did not offer any apparent advantage with respect to turbidity and organics removal. Testing of CAS and AAS as flocculant aids was also conducted. Results from a full factorial experiment focused on CAS testing on Lake Ontario water showed that coagulant dose is the most significant contributor to CSMR, turbidity, DOC removal, and THM control. Generally, improvements resulting from CAS addition were of small magnitude (<15%). Reductions in CSMR were attributed to the presence of the sulfate-containing chemicals alum and sulfuric acid in the CAS formulation. Testing of sulfuric acid-activated AAS on Grand River water showed that pairing of AAS with polyaluminum chloride provides better results than with alum with respect to DOC removal (39% and 27% respectively at 60 mg/L coagulant dose). Highest turbidity removals (>90%) with both coagulants were achieved at the tested coagulant and AAS doses of 10 mg/L and 4 mg/L respectively. CSMR reductions in the presence of AAS were also attributable to sulfate contribution from sulfuric acid. Bench-scale simulation of a high-rate sand-ballasted clarification process on Grand River water showed comparable removal efficiencies for turbidity (80 – 90% at 10 mg/L), and DOC (30 – 40% at 50 mg/L). Finally, six different coagulants were tested on the two source waters for potential applicability in CSMR adjustment in the context of lead corrosion. The two chloride-containing coagulants polyaluminum chloride and aluminum chlorohydrate increased CSMR in proportion to the coagulant dose added, as would be expected. Average chloride contribution per 10 mg/L coagulant dose was 2.7 mg/L and 2.0 mg/L for polyaluminum chloride and aluminum chlorohydrate, respectively. Sulfate-contributing coagulants aluminum sulfate, ferric sulfate, pre-hydroxylated aluminum sulfate, and polyaluminum silicate sulfate reduced CSMR as coagulant dose increased, also as would be expected. The highest sulfate contributors per 10 mg/L dose were pre-hydroxylated aluminum sulfate (6.2 mg/L) and ferric sulfate (6.0 mg/L). The lowest CSMR achieved was 0.6 in Lake Ontario water at a 30 mg/L dose and 0.8 in Grand River water at a 60 mg/L dose. Highest DOC removals were achieved with the chloride-containing coagulants in both waters (35 – 50%) with aluminum chlorohydrate showing superiority in that respect. DOC removals with sulfate-containing coagulants were less, generally in the range of 22 – 41%. Specificity of critical CSMR values to source water needs to be investigated. Additionally, long term effects of sustained high or low CSMR values in distribution systems need to be further looked into. Finally, the effect of interventions to alter CSMR on other water quality parameters influencing lead corrosion such as pH and alkalinity still represent a research deficit.

Page generated in 0.0279 seconds