41 |
Modeling pattern formation of swimming E.coliRen, Xiaojing., 任晓晶. January 2010 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
42 |
The Organized Melee: Emergence of Collective Behavior in Concentrated Suspensions of Swimming Bacteria and Associated PhenomenaCisneros, Luis January 2008 (has links)
Suspensions of the aerobic bacteria {\it Bacilus subtilis} develop patterns and flows from the interplay of motility, chemotaxis and buoyancy.In sessile drops, such bioconvectively driven flows carry plumes down the slanted meniscus and concentrate cells at the drop edge, while in pendant drops such self-concentration occurs at the bottom.These dynamics are explained quantitatively by a mathematical model consisting of oxygen diffusion and consumption, chemotaxis, and viscous fluid dynamics.Concentrated regions in both geometries comprise nearly close-packed populations, forming the collective ``Zooming BioNematic'' (ZBN) phase.This state exhibits large-scale orientational coherence, analogous to the molecular alignment of nematic liquid crystals, coupled with remarkable spatial and temporal correlations of velocity and vorticity, as measured by both novel and standard applications of particle imaging velocimetry.To probe mechanisms leading to this phase, response of individual cells to steric stress was explored, finding that they can reverse swimming direction at spatial constrictions without turning the cell body.The consequences of this propensity to flip the flagella are quantified, showing that "forwards" and "backwards" motion are dynamically and morphologically indistinguishable.Finally, experiments and mathematical modeling show that complex flows driven by previously unknown bipolar flagellar arrangements are induced when {\it B. subtilis} are confined in a thin layer of fluid, between asymmetric boundaries.The resulting driven flow circulates around the cell body ranging over several cell diameters, in contrast to the more localized flows surrounding free swimmers.This discovery extends our knowledge of the dynamic geometry of bacteria and their flagella, and reveals new mechanisms for motility-associated molecular transport and inter-cellular communication.
|
43 |
Environmental Effects on Nano-Wear of Gold and KBr Single CrystalPendergast, Megan 07 March 2008 (has links)
In order to successfully incorporate the tremendous possibilities of nanoscale applications into devices and manufacturing, significant studies need to be conducted of the properties and mechanics of materials of this small scale. In this thesis, the effect of repeated scanning of KBr, aluminum, and gold was studied by using a nanoindenter and Atomic Force Microscope (AFM) in varying environments. Additional research was performed to study the environmental effects of gold film scratching using a Taber Shear/Scratch Tester.
Scanning of KBr single crystal surface in air with a diamond tip in the Hysitron Triboindenter formed surface ripples 100 nm high, 1 micron apart. It has been observed that the nanoripple's initial height and period increase with the number of repeated scans. The surface ripples form perpendicular to the scanning direction, beginning at the bottom of sloped samples and working their way up the entire scan area. The addition of water to a wear experiment on gold film produced considerably deeper wear areas than its ambient air counterpart in both scanning machines. Scratch testing with a conical diamond tip of 77 µm radius with 125 g normal load also produced deeper wear tracks in water than in ambient air conditions.
Several mechanisms may be responsible for the ripples formation, including dislocation dynamics, chatter, piezo hysteresis and others. Most likely there is a combination of effects, with a clear differentiation between nanoripple's origination and propagation. Mechanisms responsible for rippling, including system dynamic response and stick slip behavior are investigated. Topography modification appears to be the main result of ambient wear tests at the nanoscale, whereas much higher wear rate and nanoripples are observed in water. It is possible that this moisture is assisting grain fracture and pull off.
|
44 |
Moist Rayleigh Benard ConvectionPrabhakaran, Prasanth 16 October 2018 (has links)
No description available.
|
45 |
Long range nodal signaling in vertebrate left-right specificationOhi, Yuki. January 2007 (has links)
Thesis (Ph. D. in Cell and Developmental Biology)--Vanderbilt University, May 2007. / Title from title screen. Includes bibliographical references.
|
46 |
Spatial Patterns in Dryland Vegetation and the Significance of Dispersal, Infiltration and Complex TopographyThompson, Sal January 2010 (has links)
<p>Drylands, comprising arid and semi-arid areas and the dry subtropics, over some 40% of the world's land area and support approximately 2 billion people, including at least 1 billion who depend on dryland agriculture and grazing. 10-20% of drylands are estimated to have already undergone degradation or desertification, and lack of monitoring and assessment remains a key impediment to preventing further desertification. Change in vegetation cover, specifically in the spatial organization of vegetation may occur prior to irreversible land degradation, and can be used to assess desertification risk. Coherent spatial structures arise in the distribution of dryland vegetation where plant growth is localized in regular spatial patterns. Such "patterned vegetation" occurs across a variety of vegetation and soil types, extends over at least 18 million ha, occurs in 5 continents and is economically and environmentally valuable in its own right.</p>
<p>Vegetation patterning in drylands arises due to positive feedbacks between hydrological forcing and plant growth so that the patterns change in response to trends in mean annual rainfall. Mathematical models indicate that vegetation patterns collapse to a desertified state after undergoing a characteristic set of transformations so that the condition of a pattern at any point in time can be explicitly linked to ecosystem health. This dissertation focuses on the mathematical description of vegetation patterns with a view to improving such predictions. It evaluates the validity of current mathematical descriptions of patterning for the specific case of small-scale vegetation patterns and proposes alternative hypotheses for their formation. It assesses the significance of seed dispersal in determining pattern form and dynamics for two cases: vegetation growing on flat ground with isotropic patterning, and vegetation growing on slopes and having anisotropic (i.e. directional) patterning. Thirdly, the feedbacks between local biomass density and infiltration capacity, one of the positive feedbacks believed to contribute to patterning, are quantified across a wide range of soil and climatic conditions, and new mathematical descriptions of the biomass-infiltration relationship are proposed. Finally the influence of land surface microtopography on the partitioning of rainfall into infiltration and runoff is assessed.</p> / Dissertation
|
47 |
Dynamics of Electronic Transport in Spatially-extended Systems with Negative Differential ConductivityXu, Huidong January 2010 (has links)
<p>Negative differential conductivity (NDC) is a nonlinear property of electronic transport for high electric field strength found in materials and devices such as semiconductor superlattices, bulk GaAs and Gunn diodes. In spatially extended systems, NDC can cause rich dynamics such as static and mobile field domains and moving charge fronts. In this thesis, these phenomena are studied theoretically and numerically for semiconductor superlattices. Two classes of models are considered: a discrete model based on sequential resonant tunneling between neighboring quantum wells is used to described charge transport in weakly-coupled superlattices, and a continuum model based on the miniband transport is used to describe charge transport strongly-coupled superlattices.</p>
<p>The superlattice is a spatially extended nonlinear system consisting a periodic arrangement of quantum wells (e.g., GaAs) and barriers (e.g., AlAs). Using a discrete model and only considering one spatial dimension, we find that the boundary condition at the injecting contact has a great influence on the dynamical behavior for both fixed voltage and transient response. Static or moving field domains are usually inevitable in this system. In order to suppress field domains, we add a side shunting layer parallel to the growth direction of the superlattice. In this case, the model includes both vertical and lateral spatial degrees of freedom. We first study a shunted weakly-coupled superlattice for a wide range of material parameters. The field domains are found to be suppressed for superlattices with small lateral size and good connection between the shunt and the quantum wells of the superlattice. As the lateral size of the superlattice increases, the uniform field configuration loses its stability to either static or dynamic field domains, regardless of shunt properties. A lower quality shunt generally leads to regular and chaotic current oscillations and complex spatio-temporal dynamics in the field profile. Bifurcations separating static and dynamic behaviors are characterized and found to be dependent on the shunt properties. Then we adopt the model to study the shunted strongly-coupled superlattice with the continuum model. Key structural parameters associated with both the shunt layer and SL are identified for which the shunt layer stabilizes a uniform electric field profile. These results support the possibility to realize a SL-based THz oscillator with a carefully designed structure.</p>
<p>Another important behavior of the static field domains in the weakly-coupled superlattice is bistability, i.e., two possible states (i.e., electric field configurations) for a single voltage. Noise can drive the system from one of these states (the metastable state) to the other one (the globally stable state). The process of escape from the metastable state can be viewed as a stochastic first-passage process in a high-dimensional system that possesses complex stability eigenvalues and for which a global potential energy function does not exist. This process is simulated using a stochastic differential equation system which incorporates shot noise. The mean switching time τ is fitted to an exponential expression <italic>e</italic><super>(Vth-V)<super>α</super>/D</super>, where V<sub>th</sub> denotes the voltage at the end of the current branch. The exponent α in the fitting curve deviates from 1.5 which is predicted for a generic one dimensional system. We develop an algorithm to determine an effective locally valid potential. Principal component analysis is applied to find the most probable path for switching from the metastable current state.</p> / Dissertation
|
48 |
Heterocyst Morphogenesis and Gene Expression in Anabaena sp. PCC 7120Mella Herrera, Rodrigo Andres 2010 August 1900 (has links)
Many multicellular cyanobacteria produce specialized nitrogen-fixing
heterocysts. During diazotrophic growth of the model organism Anabaena (Nostoc) sp.
strain PCC 7120, a regulated developmental pattern of single heterocysts separated by
about 10 to 20 photosynthetic vegetative cells is maintained along filaments. Heterocyst
structure and metabolic activity function to accommodate the oxygen-sensitive process
of nitrogen fixation. This dissertation focuses on my research on heterocyst
development, including morphogenesis, transport of molecules between cells in a
filament, differential gene expression, and pattern formation.
We using microarray experiments we found that conR (all0187) gene is
necessary for normal septum-formation of vegetative cells, diazotrophic grow, and
heterocyst morphogenesis. In our studies we characterized the expression of sigma
factors genes in Anabaena PCC 7120 during heterocyst differentiation, and we found
that the expression of sigC, sigG and sigE is localized primarily in heterocysts.
Expression studies using sigE mutant showed that nifH is under the control of this
specific sigma factor.
|
49 |
Hybrid multivariate classification technique and its application in tissue image analysisHatem, Iyad, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 135-143). Also available on the Internet.
|
50 |
Dorsal ventral patterning of the central nervous system : lessons from flies and fish /Cheesman, Sarah Emily, January 2003 (has links)
Thesis (Ph. D.)--University of Oregon, 2003. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 95-102). Also available for download via the World Wide Web; free to University of Oregon users.
|
Page generated in 0.0386 seconds