1 |
Physical Aging and Hygrothermal Response of Polycarbonate/Acrylonitrile-Butadiene-Styrene Polymer BlendTang, Jacky January 2007 (has links)
Polycarbonate (PC) is a glassy engineering thermoplastic that has been used for decades because of its superior mechanical properties such as high toughness and stiffness, and for its general thermal stability. However, the industrial demand for higher performance polymers with faster processing times has caused PC to be gradually replaced by different engineered polymer blends, such as polycarbonate/acyrlonitrile-butadiene-styrene (PC/ABS). Blends combine the advantages of the individual components but because they are a relatively new class of materials, their time-dependent behaviour is less well understood.
The goal of the present work is to characterize two primary time-dependent processes in a commercial 75:25 PC:ABS blend that are known to affect the long-term mechanical properties of the individual components. The first is physical aging which is a result of non-equilibrium fast cooling of glassy or amorphous polymers. Physical aging is associated with structural relaxation due to enthalpic and volumetric recovery. The second process is hygrothermal conditioning which is the combined application of thermal aging and moisture absorption. Three sets of characterization tests were conducted using Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared spectroscopy (FTIR).
The enthalpic relaxation results determined from DSC data for aging at nine different combinations of time and temperature showed that aging experiments are best conducted at temperatures between 80 and 90°C. This range is below the glass temperature of the ABS component. The activation energy for enthalpic relaxation for the unaged blend was found to fall between energies for PC and ABS relaxations, but not according to the rule-of-mixtures.
The present study attempted to adopt the Tool–Narayanaswamy-Moynihan (TNM) phenomenological model to predict relaxation kinetics but was found to be complicated by multiple endothermic peaks. It was then concluded that the TNM model, although very useful for single polymer systems, is unsuitable for blends. A semi-empirical model was applied instead to fit the experimental data which provided a reasonable estimate of the relaxation behaviour. Aging at 80°C for the period investigated did not reach equilibrium and it is expected that aging times of upwards of 2 years will be necessary to minimize the errors associated with the data fitting to provide a better fit of the model.
The FTIR studies revealed that thermal aging at 80°C in dry atmosphere results in oxidation of the butadiene component. However, the addition of moisture to the aging process appears to prevent, or at least impede, oxidation from occurring. The presence of moisture seems to trigger hydrogen bonding, which saturates regardless of the moisture content after approximately 80 days. The initial rate of moisture diffusion in PC/ABS appeared to depend predominantly on temperature while the ambient moisture concentration tends to only affect the final equilibrium content in the blend.
|
2 |
Physical Aging and Hygrothermal Response of Polycarbonate/Acrylonitrile-Butadiene-Styrene Polymer BlendTang, Jacky January 2007 (has links)
Polycarbonate (PC) is a glassy engineering thermoplastic that has been used for decades because of its superior mechanical properties such as high toughness and stiffness, and for its general thermal stability. However, the industrial demand for higher performance polymers with faster processing times has caused PC to be gradually replaced by different engineered polymer blends, such as polycarbonate/acyrlonitrile-butadiene-styrene (PC/ABS). Blends combine the advantages of the individual components but because they are a relatively new class of materials, their time-dependent behaviour is less well understood.
The goal of the present work is to characterize two primary time-dependent processes in a commercial 75:25 PC:ABS blend that are known to affect the long-term mechanical properties of the individual components. The first is physical aging which is a result of non-equilibrium fast cooling of glassy or amorphous polymers. Physical aging is associated with structural relaxation due to enthalpic and volumetric recovery. The second process is hygrothermal conditioning which is the combined application of thermal aging and moisture absorption. Three sets of characterization tests were conducted using Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared spectroscopy (FTIR).
The enthalpic relaxation results determined from DSC data for aging at nine different combinations of time and temperature showed that aging experiments are best conducted at temperatures between 80 and 90°C. This range is below the glass temperature of the ABS component. The activation energy for enthalpic relaxation for the unaged blend was found to fall between energies for PC and ABS relaxations, but not according to the rule-of-mixtures.
The present study attempted to adopt the Tool–Narayanaswamy-Moynihan (TNM) phenomenological model to predict relaxation kinetics but was found to be complicated by multiple endothermic peaks. It was then concluded that the TNM model, although very useful for single polymer systems, is unsuitable for blends. A semi-empirical model was applied instead to fit the experimental data which provided a reasonable estimate of the relaxation behaviour. Aging at 80°C for the period investigated did not reach equilibrium and it is expected that aging times of upwards of 2 years will be necessary to minimize the errors associated with the data fitting to provide a better fit of the model.
The FTIR studies revealed that thermal aging at 80°C in dry atmosphere results in oxidation of the butadiene component. However, the addition of moisture to the aging process appears to prevent, or at least impede, oxidation from occurring. The presence of moisture seems to trigger hydrogen bonding, which saturates regardless of the moisture content after approximately 80 days. The initial rate of moisture diffusion in PC/ABS appeared to depend predominantly on temperature while the ambient moisture concentration tends to only affect the final equilibrium content in the blend.
|
3 |
Obten??o de blendas polim?ricas a partir da reciclagem de sucatas de aparelhos celulares e polietileno de baixa densidade reciclado / Obtaining polymer blends from the recycling of scrap from cell phones and low density recycled polyethyleneSantos, C?ssia Thais Silva 20 July 2016 (has links)
Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-06-06T11:42:39Z
No. of bitstreams: 1
2016 - C?ssia Thais Silva Santos.pdf: 4767415 bytes, checksum: 7078f4a6b3c6455dd65b9fa432b3a6ff (MD5) / Made available in DSpace on 2017-06-06T11:42:39Z (GMT). No. of bitstreams: 1
2016 - C?ssia Thais Silva Santos.pdf: 4767415 bytes, checksum: 7078f4a6b3c6455dd65b9fa432b3a6ff (MD5)
Previous issue date: 2016-07-20 / It is crescent the research by new materials and methods for creating and same market insertion. Currently, among the various types of waste, electronic waste is considered obsolete in a very short time and require proper disposal. In Brazil, the last year, the reuse of plastic materials has increased. This study aimed to research the importance of mobile phones waste recycling, which have short pace of useful life used as reinforcements, no development of new materials containing recycled thermoplastic polymer (Low Density Polyethylene LDPE) and from the analyzes mechanical and dangerousness of these new materials, so justify the replacement of the importance of some materials with longer life time and easy recyclability, that form provides a reduction of environmental impacts caused by the generated waste were developed six blends of (Low Density Polyethylene recycled and PCABS carcasses - LDPErec/PC-ABS), with composition and grain size variation of cell granulometry housing and also an analysis of pure materials. The results obtained for analysis of diffraction X-ray, density, water absorption, hardness, scanning electronic microscopy and mechanical testing showed one low interaction between polymers, beyond the performance of the amorphous polymer morphology and hence the crystallinity mix, directly affected at the thermal and mechanical properties. As for the hazard analysis of the materials developed, they were not found excess levels of metal toxicants, the limits established by ABNT NBR 10004 / ? crescente a pesquisa por novos materiais e metodologias para a cria??o e inser??o dos mesmos no mercado. Atualmente, dentre os diversos tipos de res?duos, os res?duos eletroeletr?nicos tem aumentado exponencialmente, pois estes tem sido considerados obsoletos em um intervalo de tempo muito curto e necessitam de descarte adequado. No Brasil, nos ?ltimos anos, o reaproveitamento de materiais pl?sticos tamb?m tem aumentado. Neste contexto, este trabalho teve como objetivo pesquisar a import?ncia da reciclagem de res?duos de telefones celulares (carca?as), que possuem curto tempo de vida ?til, utilizados como refor?os, no desenvolvimento de novos materiais, contendo pol?mero termopl?stico reciclado (polietileno de baixa densidade ? PEBD) e, a partir das an?lises mec?nicas e da periculosidade destes novos materiais, justificar a import?ncia da substitui??o de alguns materiais por outros com maior tempo de vida ?til e de f?cil reciclabilidade, de forma que proporcione a redu??o dos impactos ambientais provocados com os res?duos gerados. Para tal, foram desenvolvidas 6 blendas de (Polietileno de baixa densidade reciclado e carca?as de PC-ABS - PEBDrec/PC-ABS), com varia??o da composi??o e granulometria das carca?as de aparelhos celular, e tamb?m a an?lise dos mat?rias puros. Os resultados obtidos pelas an?lises de difra??o de raios-X, densidade, absor??o de ?gua, dureza, microscopia eletr?nica de varredura e ensaios mec?nicos mostraram que a baixa intera??o entre os pol?meros, al?m da atua??o do pol?mero amorfo na morfologia e, consequentemente, na cristalinidade da mistura, afetou diretamente nas propriedades t?rmicas e mec?nicas. Quanto ? an?lise de periculosidade dos materiais desenvolvidos, n?o foram encontrados n?veis excedentes de metais t?xicos, conforme limites estabelecidos pela NBR ABNT 10004.
|
4 |
Reciclagem de policarbonato por meio da composição de blendas de ABS/PCBergamini, Paula Aparecida 10 August 2015 (has links)
Made available in DSpace on 2016-03-15T19:36:55Z (GMT). No. of bitstreams: 1
Paula Aparecida Bergamini.pdf: 11467964 bytes, checksum: f444fac5ebd5632e2cdcc942570f6e37 (MD5)
Previous issue date: 2015-08-10 / This study proposes the production and characterization of blends of ABS/PC through reuse
of discarded PC in the automotive panel production process. The developed alloy ratios are
(ABS/PC) 30/70, 50/50 and 70/30, in addition to the neat materials. For comparative purposes
the mixtures were developed for both materials recycled PC (PCr) and neat PC (PCn). The
blends were processed in a twin screw extruder under controled heating temperature. / Este estudo propõe a produção e caracterização de blendas de ABS/PC por meio do reuso do policarbonato (PC) descartado no processo de produção de painéis automotivos. As proporções de mistura desenvolvidas para estudo foram (ABS/PC) 30/70, 50/50 e 70/30, além dos materiais puros. Para efeitos comparativos, as misturas foram desenvolvidas tanto com o PC reciclado (PCr) como com o PC natural (PCn). As blendas foram processadas em
extrusora de dupla rosca, sob temperatura controlada.
|
5 |
Environmental Stress Cracking of Interior Polymers of aCar (PC/ABS and ABS)Kumar Bhalla, Ashish January 2018 (has links)
Today, in the automotive industry, many of the interior parts in the car are made of ABS and PC/ABS polymeric blend. These materials are used in the areas for example: instrument panels, tunnel consoles and door panels. The extensive use of these materials means that it is important to gain in-depth knowledge about the materials,their properties; and also their behaviour when in contact with different chemicals andat different conditions.This study aims to address the potential problem of the polymers used in the interiorof the car - ABS and PC/ABS cracking due to environmental factors. This study proposes to introduce a low-cost test method to compare the polymeric materials and choose the best one for future purposes with the environmental circumstances in mind for materials to have a good service life.During the thesis project, ABS and PC/ABS samples were tested for environmental stress cracking to compare the strained materials against PEG 400 and an assemblyfluid chemical. These tests were conducted at three different temperature levels.Differential Scanning Calorimetry (DSC) was used to verify the polymeric materialsthat the samples were made of. Optical microscope and FTIR were employed to analyzethe samples for crazes / cracks and degradation of material, respectively.This thesis helped in establishing a good starting point for ESC testing of different materials for the organization. The test method was used to test the failure of material sin ESC. It was observed that the chemicals used for the testing were aggressive and accelerated the cracking process in the materials rapidly. Another observation of the tests was that high strain also caused the materials to fail quickly. While comparing the materials, PC/ABS polymer blend was more resistant than ABS materials to cracking when exposed to same strain level during the creep rupture test (test in absence ofchemicals acting as a reference test for ESC).
|
6 |
Procédé de recyclage de mélanges ABS-PC issus de déchets d’équipements électriques et électroniques (DEEE) / Mechanical recycling of PC-ABS blend from waste electrical and electronic equipementAusset, Sandrine 08 February 2013 (has links)
L’objectif de cette thèse est de proposer un procédé de recyclage de mélanges ABS-PC issus des Déchets d’Equipements Electriques et Electroniques (DEEE) réels capable de s’affranchir des contraintes liées au recyclage des polymères.Ces contraintes sont liées, entre autre, à la présence d’impuretés (autres polymères) après l'étape de tri et au procédé de remise en forme. L’influence de la présence d’impureté dans un alliage ABS-PC sur ces propriétés mécaniques (résistance au choc et traction) a donc été étudiée en s’appuyant sur des observations morphologiques. Il s’est avéré que la présence d’impureté non miscible conduit à la dégradation des propriétés mécaniques de l’ABS-PC. L’ajout de compatibilisants a été étudié afin de masquer l’effet de l’impureté. Il a ainsi été montré que l’amélioration de la résilience du mélange (ABS-PC/impureté) est intimement liée à la modification de la morphologie et à la nature de l’adhésion aux interfaces. Il a ensuite été constaté que l’optimisation des paramètres de mise en oeuvre engendre une modification de la morphologie. Cette modification peut entrainer une augmentation de la résistance au choc.Ces deux méthodes ont ensuite été appliquées à un mélange d’ABS-PC ignifugé issu des DEEE contenant une impureté. L’ajout de compatibilisant et de la modification des paramètres de mise en oeuvre améliore la résilience. En revanche, cela a un effet néfaste sur le comportement au feu de l’alliage ABS-PC ignifugé. / The aim of this PhD work was to propose a recycling process method of PC-ABS blend from real Waste Electrical and Electronic Equipment deposit (WEEE) deposits. This recycling process has to be able to overcome the problematic related to polymer recycling.The main constraints about recycling process are the presence of polymeric impurities after sorting step as well as mechanical reprocessing (extrusion and injection molded). Firstly, the effect of impurities on the mechanical properties (tensile and impact strength) and morphology (SEM, TEM) of PC-ABS blends have been studied. The presence of immiscible impurity deteriorates the mechanical properties of PC-ABS. The addition of an appropriate compatibilizer enhances the interface between PC-ABS and the impurity. The compatibilizer improves the impact strength and changes the morphology of this blend. Secondly, the optimization of injection molding parameters generates a change in morphology. This change leads to an increase of the impact strength.Both methods were applied to a flame retardant PC-ABS from WEEE with an impurity. The addition of a compatibilizer and the modification of injection molding parameters improve the impact strength. The presences of an impurity and a compatibilizer have a negative effect on the flame retardant properties of the PC-ABS blend
|
Page generated in 0.0242 seconds