• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Microfluidic Devices Based on a Thermally Responsive PDMS Composite

Samel, Björn January 2007 (has links)
The field of micro total analysis systems (μTAS) aims at developments toward miniaturized and fully integrated lab-on-a-chip systems for applications, such as drug screening, drug delivery, cellular assays, protein analysis, genomic analysis and handheld point-of-care diagnostics. Such systems offer to dramatically reduce liquid sample and reagent quantities, increase sensitivity as well as speed of analysis and facilitate portable systems via the integration of components such as pumps, valves, mixers, separation units, reactors and detectors. Precise microfluidic control for such systems has long been considered one of the most difficult technical barriers due to integration of on-chip fluidic handling components and complicated off-chip liquid control as well as fluidic interconnections. Actuation principles and materials with the advantages of low cost, easy fabrication, easy integration, high reliability, and compact size are required to promote the development of such systems. Within this thesis, liquid displacement in microfluidic applications, by means of expandable microspheres, is presented as an innovative approach addressing some of the previously mentioned issues. Furthermore, these expandable microspheres are embedded into a PDMS matrix, which composes a novel thermally responsive silicone elastomer composite actuator for liquid handling. Due to the merits of PDMS and expandable microspheres, the composite actuator's main characteristic to expand irreversibly upon generated heat makes it possible to locally alter its surface topography. The composite actuator concept, along with a novel adhesive PDMS bonding technique, is used to design and fabricate liquid handling components such as pumps and valves, which operate at work-ranges from nanoliters to microliters. The integration of several such microfluidic components promotes the development of disposable lab-on-a-chip platforms for precise sample volume control addressing, e.g. active dosing, transportation, merging and mixing of nanoliter liquid volumes. Moreover, microfluidic pumps based on the composite actuator have been incorporated with sharp and hollow microneedles to realize a microneedle-based transdermal patch which exhibits on-board liquid storage and active dispensing functionality. Such a system represents a first step toward painless, minimally invasive and transdermal administration of macromolecular drugs such as insulin or vaccines. The presented on-chip liquid handling concept does not require external actuators for pumping and valving, uses low-cost materials and wafer-level processes only, is highly integrable and potentially enables controlled and cost-effective transdermal microfluidic applications, as well as large-scale integrated fluidic networks for point-of care diagnostics, disposable biochips or lab-on-a-chip applications. This thesis discusses several design concepts for a large variety of microfluidic components, which are promoted by the use of the novel composite actuator. Results on the successful fabrication and evaluation of prototype devices are reported herein along with comprehensive process parameters on a novel full-wafer adhesive bonding technique for the fabrication of PDMS based microfluidic devices. / QC 20100817
2

MANUFACTURING PROCESS OF NANOFLUIDICS USING AFM PROBE

Karingula, Varun Kumar 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nano fluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

Page generated in 0.0627 seconds