71 |
Modelling of Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane (PDMS) Mixed Matrix MembranesEbneyamini, Arian January 2017 (has links)
In this thesis, a theoretical description of mass transport through membranes used in pervaporation separation processes has been investigated for both dense polymeric membranes and mixed matrix membranes (MMMs). Regarding the dense polymeric membranes, the Maxwell-Stefan model was extended to consider the effect of the operating temperature and membrane swelling on the mass transport of species within the membrane. The model was applied semi-empirically to predict the membrane properties and separation performance of a commercial Polydimethylsiloxane (PDMS) membrane used in the pervaporation separation of butanol from binary aqueous solutions. It was observed that the extended Maxwell-Stefan model has an average error of 10.5 % for the prediction of partial permeate fluxes of species compared to roughly 22% for the average prediction error of the Maxwell-Stefan model. Moreover, the parameters of the model were used to estimate the sorption properties and diffusion coefficients of components through the PDMS membrane at different butanol feed concentrations and operating temperatures. The estimated values of the sorption properties were observed to be in agreement with the literature experimental data for transport properties of butanol and water in silicone membranes while an exact comparison for the diffusion coefficient was not possible due to large fluctuations in literature values.
With respect to the MMMs, a new model was developed by combining a one-directional transport Resistance-Based (RB) model with the Finite Difference (FD) method to derive an analytical model for the prediction of three-directional (3D) effective permeability of species within ideal mixed matrix membranes. The main novelty of the proposed model is to avoid the long convergence time of the FD method while the three-directional (3D) mass transport is still considered for the simulation. The model was validated using experimental pervaporation data for the separation of butanol from aqueous solutions using Polydimethylsiloxane (PDMS)/activated carbon nanoparticles membranes and using data from the literature for gas separation application with MMMs. Accurate predictions were obtained with high coefficient of regression (R2) between the calculated and experimental values for both applications.
|
72 |
Application of Argon Plasma Technology to Hydrophobic and Hydrophilic Microdroplet Generation in PDMS Microfluidic DevicesGraham, Brennan P 01 March 2017 (has links)
Abstract Application of Argon Plasma Technology to Hydrophobic and Hydrophilic Microdroplet Generation in PDMS Microfluidic Devices Brennan Graham Microfluidics has gained popularity over the last decade due to the ability to replace many large, expensive laboratory processes with small handheld chips with a higher throughput due to the small channel dimensions [1]. Droplet microfluidics is the field of fluid manipulation that takes advantage of two immiscible fluids to create droplets from the geometry of the microchannels. This project includes the design of a microfluidic device that applies the results of an argon plasma surface treatment to polydimethylsiloxane (PDMS) to successfully produce both hydrophobic and hydrophilic surfaces to create oil in water (O/W) and water in oil (W/O) microdroplets. If an argon plasma surface treatment renders the surface of PDMS hydrophilic, then O/W microdroplets can be created and integrated into a larger microdroplet emulsion device. The major aims of this project include: (1) validating previously established Cal Poly lab protocols to produce W/O droplets in hydrophobic PDMS microdroplet generators (2) creating hydrophilic PDMS microdroplet generators (3) making oil in water droplets in hydrophilic PDMS microdroplet generators (4) designing a multilayer microfluidic device to transfer W/O droplets to a second hydrophilic PDMS microdroplet generator v W/O droplets were successfully created and transferred to a second hydrophilic PDMS device. The hydrophilic PDMS device also produced O/W droplets in separate testing from the multilayered microfluidic PDMS device. The ultimate purpose of this project is to create a multilayer microdroplet generator that produces water in oil in water (W/O/W) microdroplet emulsions through a stacked device design that can be used in diagnostic microdroplet applications. Thesis Supervisor: Dave Clague Title: Professor of Biomedical Engineering
|
73 |
APPLICATION OF EWOD IN POROUS MICRO-MODELSXuhui Zhou (8097782) 09 December 2019 (has links)
<div>Single phase immiscible fluid flow in porous media is often described by Darcy’s law. However, in two-phase or multi-phase conditions, the properties of porous medium rely on the saturation of each phase. One of the constitutive equations, the relationship between capillary pressure and saturation, exhibits hysteresis property. To accurately describe two-phase immiscible fluid in porous media, some researchers used interfacial area per volume (IAV) as an additional variable. Previous experiments were done by other experimenters to support the uniqueness of IAV in capillary pressure – saturation hysteresis relationship by externally changing the capillary pressure. </div><div>A technique called Electro-Wetting On Dielectric (EWOD) was developed for sealed micro-models to examine the saturation-pressure relationship by internally manipulating the saturation which in turns affects IAV. Single-plate EWOD samples were used to select material properties and experimental parameters. These experiments found that Poly-Di-Methyl-Siloxane (PDMS) is a good dielectric material that enabled changes in the contact angle between a droplet and PDMS from ~120° (non-wetting) to ~50° (wetting). Double-plate EWOD was used to demonstrate that discrete electrodes (with PDMS as dieletric on both plates) enabled the transportation and merging of droplet(s).</div><div>A novel method was developed to incorporate EWOD into a wedge-shaped PDMS micro-model. Imbibition and drainage scans of the capillary pressure – saturation relationship (Pc-S) were performed in the channel with and without voltage. The drainage curves differed significantly between the two conditions, while the imbibition curves were similar with and without voltage. The total energy for Pc-S decreased by 70 nJ with the application of EWOD with most of difference arising from a 20 Pa decrease in pressure for the same saturation condition during drainage.</div><div>Studies were also performed to examine the amount of energy associated with depiing of fluid interfaces. A 5-step wedge-shaped micro-model with EWOD was fabricated to increase the probability of pinning during an experiment. The amount of energy released as a fluid depinned was observed to be a function of capillary pressure. More energy was released at the 1st step for higher the pressures than lower pressures. The energy released from depinning at the first step in the channel ranged from 30 – 100 nJ for pressures from 70 to 100 Pa. The occurrence and magnitude of additional depinnings along the step-shaped channel also depended on the pressure. Each successive depining released less energy.</div><div>Finally, experiments were performed to examine the range of EWOD in a sealed micro-model with discrete electrodes. When voltage was not applied directly on the fluid-fluid interface but on the solution, the voltage could still actuate the interface causing it to move and advance farther into a channel. The ability of the application of EWOD to drive fluid-fluid interfaces decreases with active electrode distance from the interface.</div>
|
74 |
Preparation and Characterization of Porous PDMS for Printed ElectronicsBalubaid, Eyad Khalid M. January 2019 (has links)
No description available.
|
75 |
A PDMS Sample Pretreatment Device for the Optimization of Electrokinetic Manipulations of Blood SerumAbram, Timothy J 01 September 2009 (has links) (PDF)
This project encompasses the design of a pretreatment protocol for blood serum and adaption of that protocol to a microfluidic environment in order to optimize key sample characteristics, namely pH, conductivity, and viscosity, to enable on-chip electrokinetic separations. The two major parts of this project include (1) designing a pretreatment protocol to optimize key parameters of the sample solution within a target range and (2) designing /fabricating a microchip that will effectively combine the sample solution with the appropriate buffers to replicate the same bench-scale protocol on the micro-scale.
Biomarker detection in complex samples such as blood necessitates appropriate sample “pretreatment” in order for specific markers to be isolated through subsequent separations. This project, though using conventional mixing techniques and buffer solutions, is one of the first to observe the effects of the combination of micro-mixing and sample pretreatment in order to create an all-in-one “pretreatment chip”.
Using previous literature related to capillary electrophoresis, a bench-scale pretreatment protocol was developed to tune these parameters to an optimal range. A PDMS device was fabricated and used to combine raw sample with specific buffer solutions. Off-chip electrodes were used to induce electrokinetic micro-mixing in the mixing chamber, where homogeneous analyte mixing was achieved in less than one second using an 800V DC pulse wave. Ultimately, we wish to incorporate this device with pre-fabricated electrokinetic devices to optimize certain bioseparations.
|
76 |
PATTERNING BELOW THE LENGTH SCALE OF HETEROGENEITY: NANOMETER-SCALE CHEMICAL PATTERNING OF ELASTOMERIC SURFACESLaura O Williams (16950153) 13 September 2023 (has links)
<p dir="ltr">There is a plethora of applications that require chemical patterning on the molecular scale. While the surface science community has made tremendous progress in achieving this level of control on hard, crystalline interfaces, significant challenges are associated with extending this progress to less “perfect” systems such as soft, amorphous interfaces. Applications ranging from soft robotics and wearable electronics to regenerative medicine often utilize polymeric materials such as polydimethylsiloxane (PDMS) and hydrogels. These materials have advantageous properties, including biocompatibility and mechanical tunability. Biological applications, for example, often require the display of functional groups with precise spatial resolution. Cellular behavior is dictated by biochemical and biophysical cues in the extracellular matrix; therefore, substrate properties, including stiffness and ligand density, must be independently tunable. Soft, polymeric materials are highly heterogenous with pore sizes ranging from 10 nm to 1 µm and hence, particularly difficult to pattern below the length scale of substrate heterogeneity. Furthermore, deconvolving mechanical properties such as elastic modulus from the density of surface-active functional groups is especially challenging, with softer materials typically corresponding is lower ligand densities. Additionally, many traditional surface science characterization and patterning methods are incompatible with soft interfaces (e.g. amorphous surface structure, low mechanical strength, hydrated environment). Recently, we have reported a method capable of achieving high-resolution chemical patterning of PDMS and hydrogels. Long studied within the scanning probe community, amphiphiles with long alkyl chains self-assemble into lying down stripe phases on highly ordered pyrolytic graphite (HOPG), generating 1-nm-wide stripes of functional headgroups between 5-nmwide stripes of exposed alkyl chains. Stripe phases of functional diacetylenes (DA) are photopolymerized, producing a polydiacetylene backbone that tethers together adjacent molecules, generating a PDA film on HOPG (sPDA). We have shown that PDA films on HOPG can be transferred to PDMS as well as polyacrylamide hydrogels. When PDMS is cured in contact with sPDAs, the PDA backbones can act as a site for hydrosilylation, the same reaction responsible for PDMS curing, covalently linking sPDAs to the PDMS mesh. Careful exfoliation reveals nm-scale functional patterns on the surface layer of PDMS. 10 Here, we examine the impact of PDMS structural components on the efficiency of interfacial reactions between sPDAs and the PDMS network. We also illustrate the impact of PDAfunctionalized PDMS on the adhesion and spreading behavior of C2C12 murine myoblasts.</p>
|
77 |
LONG-TERM STABILITY OF PLASMA OXIDIZED POLYDIMETHYLSILOXANE SURFACESKIM, BONGSU January 2004 (has links)
No description available.
|
78 |
Implantation of Biocompatible Fibers for the Coupling of Muscle GroupsFranklin, Jeff E. 27 September 2005 (has links)
No description available.
|
79 |
DESIGN AND CHARACTERIZATION OF PLANAR LOW REYNOLDS NUMBER MICROFLUIDIC MIXERS FOR LAB-ON-A-CHIP APPLICATIONSBHAGAT, ALI ASGAR SALEEM 02 October 2006 (has links)
No description available.
|
80 |
Photodefinable Polydimethylsiloxane (PDMS) Thin FilmsJOTHIMUTHU, PREETHA 28 August 2008 (has links)
No description available.
|
Page generated in 0.0382 seconds