• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

POLYMER EMBOSSING TOOLS FOR RAPID PROTOTYPING OF PLASTIC MICROFLUIDIC DEVICES

NARASIMHAN, JAGANNATHAN 02 September 2003 (has links)
No description available.
2

DESIGN AND CHARACTERIZATION OF PLANAR LOW REYNOLDS NUMBER MICROFLUIDIC MIXERS FOR LAB-ON-A-CHIP APPLICATIONS

BHAGAT, ALI ASGAR SALEEM 02 October 2006 (has links)
No description available.
3

A CFD Model of Mixing in a Microfluidic Device for Space Medicine Technology

McKay, Terri L. 16 May 2011 (has links)
No description available.
4

Circuit techniques for programmable broadband radio receivers

Forbes, Travis Michael, 1986- 02 March 2015 (has links)
The functionality provided by mobile devices such as cellular phones and tablets continues to increase over the years, with integration of an ever larger number of wireless standards within a given device. In several of these designs, each standard supported by a device requires its own IC receiver to be mounted on the device’s PCB. In multistandard and multimode radios, it is desirable to integrate all receivers onto the same IC as the digital processors for the standards, in order to reduce device cost and size. Ideally all the receivers should also share a single signal chain. Since each standard has its own requirements for linearity and noise figure, and each standard operates at a different RF carrier frequency, implementing such a receiver is very challenging. Such a receiver could be theoretically implemented using a broadband mixing receiver or by direct sampling by a high-speed analog-to-digital converter (ADC). Broadband mixing requires the use of a harmonic rejection mixer (HRM) or tunable band pass filter to remove harmonic mixing effects, which in the past have suffered from a large primary clock tuning range and high power consumption. However, direct sampling of the RF input requires a high-speed ADC with large dynamic range which is typically limited by clock timing skew, clock jitter, or harmonic folding. In this dissertation, techniques for programmable broadband radio receivers are proposed. A local oscillator (LO) synthesis method within HRMs is proposed which reduces the required primary clock tuning range in broadband receivers. The LO synthesis method is implemented in 130-nm CMOS. A clocking technique is introduced within the two-stage HRM, which helps in achieving state-of-the-art harmonic rejection performance without calibration or harmonic filtering. An analog frequency synthesis based broadband channelizer is proposed using the LO synthesis method which is capable of channelizing a broadband input using a single mixing stage and primary clock frequency. A frequency-folded ADC architecture is proposed which enables high-speed sampling with high dynamic range. A receiver based on the frequency-folded ADC architecture is implemented in 65-nm CMOS and achieves a sample rate of 2-GS/s, a mean 49-dB SNDR, and 8.5-dB NF. / text
5

Broadband RF Front-End Design for Multi-Standard Receiver with High-Linearity and Low-Noise Techniques

Kim, Ju Sung 2011 December 1900 (has links)
Future wireless communication devices must support multiple standards and features on a single-chip. The trend towards software-defined radio requires flexible and efficient RF building blocks which justifies the adoption of broadband receiver front-ends in modern and future communication systems. The broadband receiver front-end significantly reduces cost, area, pins, and power, and can process several signal channels simultaneously. This research is mainly focused on the analysis and realization of the broadband receiver architecture and its various building blocks (LNA, Active Balun-LNA, Mixer, and trans-impedance amplifier) for multi-standard applications. In the design of the mobile DTV tuner, a direct-conversion receiver architecture is adopted achieving low power, low cost, and high dynamic-range for DVB-H standard. The tuner integrates a single-ended RF variable gain amplifier (RFVGA), a current-mode passive mixer, and a combination of continuous and discrete-time baseband filter with built-in anti-aliasing. The proposed RFVGA achieves high dynamic-range and gain-insensitive input impedance matching performance. The current-mode passive mixer achieves high gain, low noise, and high linearity with low power supplies. A wideband common-gate LNA is presented that overcomes the fundamental trade-off between power and noise match without compromising its stability. The proposed architecture can achieve the minimum noise figure over the previously reported feedback amplifiers in common-gate configuration. The proposed architecture achieves broadband impedance matching, low noise, large gain, enhanced linearity, and wide bandwidth concurrently by employing an efficient and reliable dual negative-feedback. For the wideband Inductorless Balun-LNA, active single-to-differential architecture has been proposed without using any passive inductor on-chip which occupies a lot of silicon area. The proposed Balun-LNA features lower power, wider bandwidth, and better gain and phase balance than previously reported architectures of the same kind. A surface acoustic wave (SAW)-less direct conversion receiver targeted for multistandard applications is proposed and fabricated with TSMC 0.13?m complementary metal-oxide-semiconductor (CMOS) technology. The target is to design a wideband SAW-less direct coversion receiver with a single low noise transconductor and current-mode passive mixer with trans-impedance amplifier utilizing feed-forward compensation. The innovations in the circuit and architecture improves the receiver dynamic range enabling highly linear direct-conversion CMOS front-end for a multi-standard receiver.

Page generated in 0.0631 seconds