1 |
Curvas planas : clássicas, regulares e de preenchimentoMaia, Francisco Everton Pereira January 2016 (has links)
Orientador: Prof. Dr. Vinicius Cifú Lopes / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016. / Neste trabalho apresentaremos uma visão sobre os princípios das curvas planas. Iniciamos o desenvolvimento dos estudos com as cônicas: parábola, elipse e hipérbole que são aplicadas no Ensino Médio normalmente usando equações cartesianas. Abordaremos o assunto destas e outras curvas usando equações paramétricas, com intuito de mostrar a vantagem de utilizá-las. Abrangeremos em nossos estudos a catenária, a cicloide e a curva de Bézier, curvas as quais não são estudadas no Ensino Básico, mas poderiam ser apresentadas como um desafio
motivador ao estudo da Matemática, explorando suas várias aplicações que acontecem de maneira natural em nosso cotidiano. Apresentaremos propriedades gerais das curvas como: continuidade, parametrização, comprimento de arco, curva suave, curvatura e outras, além de realizar a demonstração do teorema fundamental das curvas planas e para finalizar estudaremos uma curva exótica, conhecida como curva de preenchimento de espaço, construída pela primeira vez pelo matemático italiano Giuseppe Peano. / In this work we will present an insight into the principles of flat curves. We start with the conics: parabola, ellipse and hyperbole which are applied in high school usually using Cartesian equations. We will discuss those and other curves using parametric equations, in order to show the advantage of using them. We will cover in our studies the catenary, the cycloid and a Bézier curve, curves which are not studied in basic education, but could be presented as a challenging motivation to the study of Mathematics by exploring their various uses that happen naturally in our everyday lives. We will introduce general properties of curves as: continuity, parameterization, arc length, smooth curve, curvature and others, in addition to the proof of the fundamental theorem of plane curves, and finally we will study an exotic curve, known as space-filling curve, built for the first time by the Italian mathematician Giuseppe Peano.
|
Page generated in 0.0209 seconds