• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG

Haggag, Y.A., Abdel-Wahab, Y., Ojo, O., Osman, M.A., El-Gizawy, S., El-Tanani, Mohamed, Faheem, A., McCarron, P.A. 30 December 2015 (has links)
Yes / The aim of this study was to design a controlled release vehicle for insulin to preserve its stability and biological activity during fabrication and release. A modified, double emulsion, solvent evaporation, technique using homogenisation force optimised entrapment efficiency of insulin into biodegradable nanoparticles (NP) prepared from poly (dl-lactic-co-glycolic acid) (PLGA) and its PEGylated diblock copolymers. Formulation parameters (type of polymer and its concentration, stabiliser concentration and volume of internal aqueous phase) and physicochemical characteristics (size, zeta potential, encapsulation efficiency, in vitro release profiles and in vitro stability) were investigated. In vivo insulin sensitivity was tested by diet-induced type II diabetic mice. Bioactivity of insulin was studied using Swiss TO mice with streptozotocin-induced type I diabetic profile. Insulin-loaded NP were spherical and negatively charged with an average diameter of 200–400 nm. Insulin encapsulation efficiency increased significantly with increasing ratio of co-polymeric PEG. The internal aqueous phase volume had a significant impact on encapsulation efficiency, initial burst release and NP size. Optimised insulin NP formulated from 10% PEG–PLGA retained insulin integrity in vitro, insulin sensitivity in vivo and induced a sustained hypoglycaemic effect from 3 h to 6 days in type I diabetic mice.
2

Řízené uvolňování léčiv z biodegradabilních hydrogelů. / Controlled Drug Release from Biodegradable Hydrogels.

Oborná, Jana January 2018 (has links)
This dissertation is focused on the controlled release of drugs from a biodegradable amphiphilic hydrogel based on hydrophobic poly(lactic acid), poly(glycolic acid) and hydrophilic poly(ethylene glycol) (PLGA-PEG-PLGA, ABA) and its modification with itaconic anhydride (ITA). The resulting ,-itaconyl(PLGA-PEG-PLGA) copolymer is referred to as ITA/PLGA-PEG-PLGA/ITA or ITA/ABA/ITA. Itaconic acid provides reactive double bonds and a functional carboxyl group at the ends of the PLGA-PEG-PLGA copolymer chain, thereby rendering the modified ITA/ABA/ITA copolymer less hydrophobic and offering the possibility of forming a carrier for hydrophilic drug substances. These functional copolymers are thermosensitive and change in the external environment (e.g. temperature) causes a sol-gel phase transition due to the formation of micellar structure. The bioactive substances can thus be mixed with a copolymer which is in a low viscous phase (sol phase) and subsequently the mixture can be injected into patient's body at the target site where it forms a gel at 37 °C. This hydrogel becomes a drug depot, which gradually releases the active substance. Prediction of the substance’s release profile from the hydrogel is an effective tool to determine the frequency of administration, potentially enhancing efficacy, and assessment of side effects associated with dosing. The analgesic paracetamol and the sulfonamide antibiotic sulfathiazole were used as model drugs, representing hydrophilic and hydrophobic substances, respectively. The active substances had a significant effect on the resulting hydrogel stiffness. Type of solvent, incubation medium and nanohydroxyapatite also influenced on the gel stiffness and subsequent stability of the hydrogel-drug system. Controlled release of drugs took place in simulated conditions of the human body. Verification of Korsmeyer-Peppas (KP) drug-release model is also discussed in this thesis. The KP model was found suitable for simulating the release of sulfathiazole from ABA and ITA/ABA/ITA hydrogels. On the contrary, the performance of KP model was not suitable for describing the release of paracetamol from the ABA hydrogels. Therefore, a new regression model suitable for both buffered simulated media and water has been proposed. The proposed model fitted better the release of both sulfathiazole and paracetamol from composite material prepared from ABA hydrogel and nanohydroxyapatite.
3

Surface Modification of PLGA Electrospun Scaffolds for Wound Healing and Drug Delivery Applications

Iselin, Jacob A. January 2008 (has links)
No description available.

Page generated in 0.0203 seconds