41 |
Study of the giant electroresistance in epitaxial thin films of La0.9Sr0.1MnO3Yao, Hui, January 2005 (has links)
Thesis (M.Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
42 |
A Study on The PZT Thin Films Prepared by SputteringChang, Cheng-Nan 31 July 2004 (has links)
Lead zirconate titanate (PZT) thin films have been extensively investigated for many applications, such as MEMS devices (actuators, sensors, transducers, SAW devices) and memory devices (DRAM, NVFRAM). In this study, the sputtering deposition methods were used to fabricate the PZT thin films. Multilayer Si/SiO2/Ti/Pt was used as substrate, in which the thickness of SiO2, Ti and Pt layer was 250, 50 and 150nm. In order to improve the electric and piezoelectric properties of PZT thin films, the few nanometer thick layer of Ti on the platinum have been used for fabricating oriented PZT thin films. Then, the PZT thin films required the heat treatment for crystallization of perovskite structures. RTA and FA were taken for the heat treatment. The crystallographic and surface characteristics of PZT thin films were determined by XRD and Optical Microscope. Finally, PZT thin films deposited on two kinds of substrates were successfully transformed from amorphous phase to perovskite phase by two kinds of the annealing processes. The Ti seed layer yielded (111)-textured PZT even for thin seed layer. But, it also had less tolerances to anneal. Si/SiO2/Ti/Pt/PZT structures were the better way to fabricate the PZT thin films, which had the preferred orientations of (100¡^,(110¡^,and (200).
|
43 |
Thin films and heterojunctions of tetravalent hafnium ion(Hf4+) doped perovskite manganite La1-xHfxMnO3Wang, Lin, 汪琳 January 2010 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy
|
44 |
Studies on thin films and heterojunctions of electron/hole-doped perovskite manganitesWu, Zhenping, 吴真平 January 2012 (has links)
Intensive research interests in condensed matter physics have been focused at the strongly correlated electron systems. Most of the efforts were devoted in hole-doped manganites with a double exchange interaction between Mn3+/Mn4+. Recently, tetravalent ions substitution has also stimuli much attention as a supplement for the hole-doping. Such electron-doped manganites may be of great potential for the development of all-manganites devices. Manganites are extremely sensitive to external disturbances, such as magnetic fields, electric fields, currents, mechanical strain, and photo illumination, etc. These extraordinary properties make manganites promising for practical applications. In this thesis, the field modulation on physical properties in electron/hole-doped manganites films and heterojunctions were investigated.
The effects of tetravalent hafnium doping on the structural, transport, and magnetic properties of polycrystalline La1-xHfxMnO3(LHMO) (0.05 ≤x ≤0.3) were studied systematically. A phase diagram was obtained for the first time through magnetization and resistance measurements in a broad temperature range. An abnormal enhancement of magnetization was observed at about 42 K. It was further confirmed that the second magnetic phase MnO2in LHMO gives rise to such a phenomenon. The dynamic magnetic properties of LHMO, such as relaxation and aging processes, were studied, demonstrating a spin-glass state at low temperature accompanied by a ferromagnetic phase.
Heterojunctions composed of n-type SrTiO3-δand p-type GaAs exhibited excellent rectifying behavior from 40K to room temperature. The photocarrier injection effect and a colossal photo-resistance were observed. Strong dependences on both temperature and bias voltage were found as well, which might be under stood by considering the band structure of the formed p-njunction. By employing an ultrathin SrTiO3buffer layer,La0.8Ca0.2MnO3films could be epitaxially grown on GaAs substrates. The heterostructures exhibit good rectifying behavior with a paramagnetic-ferromagnetic transition at ~200K. The variation of diffusion voltage with temperature in these heterostructures could be explained by the effects of the Hund’s rule coupling between the La0.8Ca0.2MnO3and the buffer layer.
The effects of the strain induced by ferroelectric poling on the magnetic and electric properties have been investigated by using 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3(PMN-PT) substrates. The polarization of the PMN-PT crystal reduces the biaxial tensile strain in the formed La0.9Hf0.1MnO3layer.It results in a significant decrease in resistance and an enhancement of the phase transition temperature as well as the magnetization. The impact of the lattice strain on the charge/orbital ordering state was also been studied. The modification of charge/orbital ordering phase by the electric fields and ferroelectric polarization suggested that the unstable states in the manganites are sensitive to the strain.
Heterojunctions of La1-xHfxMnO3/Nb:SrTiO3 were fabricated and investigated under different fields (electric, magnetic and optic). These heterojunctions exhibited excellent rectifying behavior in a wide temperature range. Their properties could be significantly modulated by magnetic fields. Prominent photovoltaic effect was also observed in the formed junctions. / published_or_final_version / Physics / Doctoral / Doctor of Philosophy
|
45 |
Experimental investigations of doped barium cerate and zirconate ceramic electrolytesFlint, Sara Dianne January 1995 (has links)
No description available.
|
46 |
Synthesis and characterisation of new calcium-ferrite based phasesChavez-Carvayar, Jose Alvaro January 1995 (has links)
Phase formation studies in the quaternary section Ca<sub>2-<I>y</I></sub>Sr<I><sub>y</sub></I>Fe<sub>2-<I>x</I></sub>B'<I><sub>x</sub></I>O<I><sub>γ</sub></I> : B' = Nb, Ta, 0 ≤ <I>y</I> ≤ 2.0 and 0 ≤ <I>x</I> ≤ 2.0 were carried out. Results are summarised below for B' = Nb; for B' = Ta they were broadly similar. Four solid solution phases were found: i) a cubic solid solution, with a variable compositional extent <I>x</I>, which increased with substitution of Ca by Sr, from 0.45 ≤ <I>x</I> ≤ 0.65 for <I>y</I> = 0, to 0 ≤ <I>x</I> ≤ 1.2 for <I>y</I> = 2.0. ii) A limited orthorhombic solid solution along the Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub>-Ca<sub>2</sub>B'<sub>2</sub>O<sub>7</sub> join with 0.8 ≤ <I>x</I> ≤ 1.0. iii) A complete range of orthorhombic, brownmillerite solid solution for <I>x</I> = 0 and iv) an orthorhomic, perovskite-related solid solution, isostructural with Ca<sub>2</sub>Nb<sub>2</sub>O<sub>7</sub>, for <I>x</I> = 2.0. A combination of differential thermal analysis, thermogravimetry, Mössbauer spectroscopy, high temperature powder X-ray diffraction, Rietveld refinement, a.c. impedance spectroscopy and magnetic susceptometry has been used to characterise these new phases. Solid solution (i) has variable oxygen content with an oxygen-deficient perovskite structure. As synthesised, for <I>x</I> = 0.6 it contains a mixture of Fe<sup>4+</sup> and Fe<sup>3+</sup> in the ratio 13/87. The oxygen content could be modified by heat treatment under various atmospheres over the range 5.5. ≤ <I>γ</I> ≤ 5.92 which corresponded to the ratios: 93/7 to Fe<sup>3+</sup>/Fe<sup>2+</sup> and 42/58 of Fe<sup>4+</sup>/Fe<sup>3+</sup>. At higher oxygen contents, <I>γ</I> > 5.7, transformation to an orthorhombic structure was observed. The electrical resistivity was dominated by grain boundary effects. Conduction is electronic and is attributed to hopping between iron in mixed oxidation states. The resistivity increased dramatically on reduction and became <I>n</I>-type, presumably due to a small fraction of Fe<sup>2+</sup> present.
|
47 |
High curie temperature bismuth- and indium-substituted lead titanateDuan, Runrun. January 2004 (has links) (PDF)
Thesis (M.S.)--School of Materials Science and Engineering, Georgia Institute of Technology, 2005. Directed by Robert Snyder. / Shrout, Thomas, Committee Member ; Snyder, Robert, Committee Member ; Speyer, Robert, Committee Chair. Includes bibliographical references.
|
48 |
Studies of the electronic and crystal structures of extended inorganic solidsDolgos, Michelle Renee, January 2009 (has links)
Thesis (Ph. D.)--Ohio State University, 2009. / Title from first page of PDF file. Includes vita. Includes bibliographical references (p. 167-180).
|
49 |
Perovskite thermoelectric materials for high-temperature energy conversionLi, Junyue January 2014 (has links)
Thesis (M.Sc.Eng.) / Despite of recent success in achieving the figure of merit ZT > 1 based on the nanoscale patterned thermoelectric structures, there have been few stable n-type materials with attractive thermoelectric responses for high temperature applications at T > 800K. In this thesis, we applied the first-principles density functional theory (DFT) calculations to probe the structure and thermoelectric properties relationship of a comprehensive series of perovskite materials. The density of states (DOS), Seebeck coefficient S, electric conductivity σ, and electronic contribution of the thermal conductivity Ke were obtained directly from the first-principles DFT calculations. In particular, Lanthanum (La), Gadolinium (Gd), Samarium (Sm), Yttrium (Y) doped MU+2093SrU+2081U+208BU+2093TiOU+2083 and Niobium (Nb) doped SrNbyTi1-yOU+2083 and doubly doped LaU+2093SrU+2081U+208BU+2093NbyTi1-yOU+2083 systems were studied. The change of the power factor S^2σ corresponding to the different dopant concentration had a good agreement with the experimental data. Our computed power factors S^2σ as a function of the dopant con- centration agree well with the available experimental data, and at the same time provide new insights for the optimal compositions. In the low doping region (x U+003E 12:5%), gadolinium and niobium are the best candidates of perovskite thermoelectric materials while at high doping level (x U+003E 25%), lanthanum and yttrium are the best options. In the case of doubly doped perovskites LaU+2093SrU+2081U+208BU+2093NbyTi1-yOU+2083, our calculations predict that the x= 12.5% and y= 12.5% is the best choice.
|
50 |
Phase coexistence in manganitesChapman, James Christopher January 2005 (has links)
The doped perovskite manganite La1-xCaxMnO3 (0<x<1) has been extensively studied due to the interactions between the electronic, magnetic and crystal lattices, and the wide range of phases that can coexist. The region of greatest interest in the bulk material is around x~0.5, where there is often mesoscopic phase coexistence between a ferromagnetic metal (FM) and an antiferromagnetic insulator (AF). The first part of the dissertation describes a systematic study on a series of La1-xCaxMnO3 films deposited onto SrTiO3 (001) by pulsed laser deposition with compositions in the range 0.40<x<0.45. From electrical transport and magnetisation measurements, the limit of metallic behaviour was found to be x=0.41 whereas ferromagnetism was seen up to x=0.45. Although the transition temperatures of 150-200 K were comparable with the bulk material, the saturation moment at 20 K was about 40% of the fully spin-aligned value, which suggests the possibility of a phase separated mixture of FM and AF regions. The deviation from the bulk behaviour is thought to be due to substrate-induced strain altering the crystal symmetry and making the cubic ferromagnetic state less favourable. In the remainder of this work, the nature of phase separation in 60 nm La0.59Ca0.41MnO3 and La0.60Ca0.40MnO3 films is investigated. The effect of an external magnetic field is studied. A high-field magnetoresistance (Δρ/ρB=0) of 41% in fields of 400 mT was observed for a La0.60Ca0.40MnO3 film, which, while not as large as the values previously reported in the literature, is still significant. The magnetic history of the films was found to be very significant, with the zero-field resistivity depending on the highest field applied. The isothermal time dependence of the resistivity was found to be exponential, with a time constant in the range 100-1000 s. Possible mechanisms for the MR effect and the dependence on magnetic history are discussed.
|
Page generated in 0.0218 seconds