• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 18
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 53
  • 17
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microperoxidase from Bacillus pumilus

Lupton, Sarah January 2001 (has links)
No description available.
2

Some factors influencing the activity of certain peroxidases

Getchell, Robert Ward, January 1930 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1930. / Typescript. Includes bibliographical references.
3

Salivary peroxidase systems and lysozyme in defense against cariogenic microorganisms

Lenander-Lumikari, Marianne. January 1992 (has links)
Thesis--University of Turku, 1992. / Includes bibliographical references.
4

Salivary peroxidase systems and lysozyme in defense against cariogenic microorganisms

Lenander-Lumikari, Marianne. January 1992 (has links)
Thesis--University of Turku, 1992. / Includes bibliographical references.
5

Caracterização de um novo membro da superfamília de peroxidases não animais : ascorbato peroxidase-relacionada

Lazzarotto, Fernanda January 2015 (has links)
Peroxidases atuam catalisando a redução do peróxido de hidrogênio à água a fim de minimizar o dano celular e modular, direta ou indiretamente, respostas celulares dependentes da sinalização operada por esta espécie reativa de oxigênio. Análises prévias, feitas em bancos de dados de sequências genômicas, permitiram a identificação de uma nova heme peroxidase não-animal (ascorbato peroxidase-relacionada ou APx-R), a qual foi descrita pela primeira vez em 2011 em um estudo publicado pelo nosso grupo de pesquisa. O trabalho detalhado nos próximos capítulos desta tese teve como objetivo caracterizar a participação de APx-R no metabolismo antioxidante vegetal através de abordagens filogenéticas e funcionais. Os resultados apresentados nos capítulos dois e três mostram que APx-R é uma peroxidase de classe I, filogeneticamente relacionada à ascorbato peroxidase, citocromo-c peroxidase e catalase peroxidase. Em Arabidopsis thaliana, APx-R codifica uma proteína cloroplastídica que atua regulando os processos de germinação e maturação da semente. A superexpressão de APx-R in planta afetou drasticamente a viabilidade das sementes, sugerindo que os níveis de expressão deste gene devem ser rigorosamente controlados para permitir o desenvolvimento da planta. Além disso, as análises filogenéticas aqui apresentadas levaram à identificação de uma nova família de peroxidases (intitulada ascorbato peroxidase-like ou APx-L), adicionando um novo componente ao complexo sistema antioxidante vegetal. / Peroxidases act reducing hydrogen peroxide into water, minimizing cell injury and modulating cell responses through hydrogen peroxide signaling. From analysis in public genome databases, we identified a non-animal heme-peroxidase (ascorbate peroxidase-related or APx-R) present from basal to vascular plants, which was initially described in a study published by our group in 2011. The work described hereafter aimed to characterize APx-R participation in the antioxidant metabolism through phylogenetic and functional approaches. The results presented on chapters two and three showed that APx-R is a class I peroxidase, phylogenetically related to ascorbate peroxidase, cytochrome-c peroxidase and catalase peroxidase. In Arabidopsis thaliana, APx-R gene encodes a chloroplast protein which acts regulating germination and seed maturation processes. The overexpression of APx-R in planta impaired seed viability, showing that APx-R expression level must be tightly controlled in order to enable plants to develop properly. In addition, the phylogenetic analysis here presented allowed the identification of a new peroxidase family, called ascorbate peroxidase-like (APx-L), which adds a new component into plant antioxidant metabolism.
6

Caracterização de um novo membro da superfamília de peroxidases não animais : ascorbato peroxidase-relacionada

Lazzarotto, Fernanda January 2015 (has links)
Peroxidases atuam catalisando a redução do peróxido de hidrogênio à água a fim de minimizar o dano celular e modular, direta ou indiretamente, respostas celulares dependentes da sinalização operada por esta espécie reativa de oxigênio. Análises prévias, feitas em bancos de dados de sequências genômicas, permitiram a identificação de uma nova heme peroxidase não-animal (ascorbato peroxidase-relacionada ou APx-R), a qual foi descrita pela primeira vez em 2011 em um estudo publicado pelo nosso grupo de pesquisa. O trabalho detalhado nos próximos capítulos desta tese teve como objetivo caracterizar a participação de APx-R no metabolismo antioxidante vegetal através de abordagens filogenéticas e funcionais. Os resultados apresentados nos capítulos dois e três mostram que APx-R é uma peroxidase de classe I, filogeneticamente relacionada à ascorbato peroxidase, citocromo-c peroxidase e catalase peroxidase. Em Arabidopsis thaliana, APx-R codifica uma proteína cloroplastídica que atua regulando os processos de germinação e maturação da semente. A superexpressão de APx-R in planta afetou drasticamente a viabilidade das sementes, sugerindo que os níveis de expressão deste gene devem ser rigorosamente controlados para permitir o desenvolvimento da planta. Além disso, as análises filogenéticas aqui apresentadas levaram à identificação de uma nova família de peroxidases (intitulada ascorbato peroxidase-like ou APx-L), adicionando um novo componente ao complexo sistema antioxidante vegetal. / Peroxidases act reducing hydrogen peroxide into water, minimizing cell injury and modulating cell responses through hydrogen peroxide signaling. From analysis in public genome databases, we identified a non-animal heme-peroxidase (ascorbate peroxidase-related or APx-R) present from basal to vascular plants, which was initially described in a study published by our group in 2011. The work described hereafter aimed to characterize APx-R participation in the antioxidant metabolism through phylogenetic and functional approaches. The results presented on chapters two and three showed that APx-R is a class I peroxidase, phylogenetically related to ascorbate peroxidase, cytochrome-c peroxidase and catalase peroxidase. In Arabidopsis thaliana, APx-R gene encodes a chloroplast protein which acts regulating germination and seed maturation processes. The overexpression of APx-R in planta impaired seed viability, showing that APx-R expression level must be tightly controlled in order to enable plants to develop properly. In addition, the phylogenetic analysis here presented allowed the identification of a new peroxidase family, called ascorbate peroxidase-like (APx-L), which adds a new component into plant antioxidant metabolism.
7

Caracterização de um novo membro da superfamília de peroxidases não animais : ascorbato peroxidase-relacionada

Lazzarotto, Fernanda January 2015 (has links)
Peroxidases atuam catalisando a redução do peróxido de hidrogênio à água a fim de minimizar o dano celular e modular, direta ou indiretamente, respostas celulares dependentes da sinalização operada por esta espécie reativa de oxigênio. Análises prévias, feitas em bancos de dados de sequências genômicas, permitiram a identificação de uma nova heme peroxidase não-animal (ascorbato peroxidase-relacionada ou APx-R), a qual foi descrita pela primeira vez em 2011 em um estudo publicado pelo nosso grupo de pesquisa. O trabalho detalhado nos próximos capítulos desta tese teve como objetivo caracterizar a participação de APx-R no metabolismo antioxidante vegetal através de abordagens filogenéticas e funcionais. Os resultados apresentados nos capítulos dois e três mostram que APx-R é uma peroxidase de classe I, filogeneticamente relacionada à ascorbato peroxidase, citocromo-c peroxidase e catalase peroxidase. Em Arabidopsis thaliana, APx-R codifica uma proteína cloroplastídica que atua regulando os processos de germinação e maturação da semente. A superexpressão de APx-R in planta afetou drasticamente a viabilidade das sementes, sugerindo que os níveis de expressão deste gene devem ser rigorosamente controlados para permitir o desenvolvimento da planta. Além disso, as análises filogenéticas aqui apresentadas levaram à identificação de uma nova família de peroxidases (intitulada ascorbato peroxidase-like ou APx-L), adicionando um novo componente ao complexo sistema antioxidante vegetal. / Peroxidases act reducing hydrogen peroxide into water, minimizing cell injury and modulating cell responses through hydrogen peroxide signaling. From analysis in public genome databases, we identified a non-animal heme-peroxidase (ascorbate peroxidase-related or APx-R) present from basal to vascular plants, which was initially described in a study published by our group in 2011. The work described hereafter aimed to characterize APx-R participation in the antioxidant metabolism through phylogenetic and functional approaches. The results presented on chapters two and three showed that APx-R is a class I peroxidase, phylogenetically related to ascorbate peroxidase, cytochrome-c peroxidase and catalase peroxidase. In Arabidopsis thaliana, APx-R gene encodes a chloroplast protein which acts regulating germination and seed maturation processes. The overexpression of APx-R in planta impaired seed viability, showing that APx-R expression level must be tightly controlled in order to enable plants to develop properly. In addition, the phylogenetic analysis here presented allowed the identification of a new peroxidase family, called ascorbate peroxidase-like (APx-L), which adds a new component into plant antioxidant metabolism.
8

Ligandin in the steroidogenic tissues of the rat : characterisation, distribution and development

Eidne, Karin Ann January 1982 (has links)
One of the main problems in the field of multifunctional proteins such as ligandin is the possibility that multiple forms and isoproteins may exist. Two forms of liver ligandin [ GSH (reduced glutathione) S-transferase B] have been described, a heterodimeric form consisting of equal amounts of Ya (22000 daltons) and Yc (25000 daltons) subunits, and a homodimeric form containing only Ya. Because rat testis ligandin, prepared by the standard technique of anion-exchange and molecular exclusion chromatography, contains more Yc subunit than Ya, it has been claimed that testis and liver ligandin are different entities (Bhargava, Ohmi, Listowsky and Arias (1980) J. Biol. Chem. 255, 724-727). This thesis investigated the nature and character of ligandin in the steroid-producing tissues of the rat. A comparative study was undertaken to establish whether testis ligandin differed from liver ligandin. Different methods of purification were used to investigate testis ligandin and its relationship to other GSH S-transferases in steroidogenic tissues. Testis ligandin purified by immunoaffinity chromatography using anti-liver YaYa ligandin antiserum yielded a product identical with liver preparations (Yc=Ya). This suggests that the differences previously described may be due to contamination of testis ligandin by a closely related species. Testis ligandin prepared by the standard technique was similar to that previously reported, containing more Yc than Ya. Cross-linking studies of standard testis ligandin preparations with dimethylsuberimidate showed more than one band in the 50000 dalton region, further strengthening the view that these testis ligandin preparations may be contaminated. Since this contaminant was likely to be another GSH S-transferase, sodium dodecyl sulphate/ polyacrylamide-gel-electrophoretic analysis was performed on testis GSH S-transferases separated by CM-cellulose chromatography. GSH S-transferase AA which was present in large amounts, was shown to migrate in the same region as Yc subunit. CM-cellulose chromatography of a 'pure' standard testis ligandin preparation revealed significant amounts of GSH S-transferase AA migrating as Yc subunit, in addition to ligandin consisting of equal amounts of Ya and Yc subunits, indicating that testis ligandin is identical with liver ligandin and that previously described differences are due to a contaminant identified as GSH S-transferase AA. Studies on ligandin in other steroid-synthesising tissues showed that ovary and adrenal ligandin prepared by standard techniques also contained more Yc than Ya. Separation of ovary GSH S-transferases on CM-cellulose showed that GSH S-transferase B, the peak reacting with anti-liver YaYa ligandin antisera contained equal amounts of Ya and Y c subunits, suggesting a situation similar to that in the testis exists. Glutathione peroxidase II activity of testis and ovary GSH S-transferases was investigated. Fractions corresponding to GSH S-transferase AA, A and B exhibited activity with cumene hydroperoxide. The considerable glutathione peroxidase activity of GSH S-transferases in testis and ovary suggest a protective function for the cells of gonadal tissue against oxidative damage to essential intracellular components. Further attempts to clarify the function of ligandin in the steroid-synthesising tissues were made. The pattern of gonadal ligandin development during early life, puberty and pregnancy determined by radioimmunoassay was found to parallel serum steroid hormone concentrations. This correlation was not observed in liver or kidney. Ligandin was localised to specific cells of the steroid synthesising tissues using immunocytochemical techniques. These findings suggest that there may be a functional link between steroidogenic cells, or products of their activity and certain GSH S-transferases. Phenobarbital pre-treatment did not have any effect on developing testis, ovary or adrenal ligand in concentrations. Immunocytochemical localisation of ligandin in rat steroid-producing tissues using a peroxidase anti-peroxidase (PAP) technique with anti-liver YaYa ligandin antiserum as the first antibody, showed staining in the testis to be limited to the interstitial (Leydig) cells. Stromal cells of the ovary and the fascicular, glomerular and reticular zones of the adrenal cortex also contained immunoreactive material. PAP staining with anti-testis ligandin antisera (testis ligandin prepared using the standard technique) showed far greater intensity of staining in these tissues, presumably due to reaction with both ligand in and GSH S-transferase AA. This study has clarified the structural aspects of testis ligandin and demonstrated identity with liver ligandin. Ontogeny of ligandin in the steroidogenic tissues and localisation to specific regions in these tissues suggests a functional link between ligandin, GSH S-transferases, GSH peroxidases and activity of steroidogenic tissue.
9

Atividade peroxinitrito redutase de tiol peroxidases em células / Peroxynitrite reductase activity of thiol peroxidases in cells

Condeles, André Luís 24 August 2017 (has links)
A família Tiol Peroxidases (TPxs - Peroxirredoxinas e Glutationa peroxidases) purificadas definitivamente reduzem peróxidos rapidamente (peroxinitrito, ONOOH/ONOO; peróxido de hidrogênio, H2O2), mas nenhuma evidência direta desta atividade foi demonstrada em células vivas. Isto é particularmente importante pois o ciclo catalítico da atividade peróxido redutase de TPxs depende de sucessivas reações de trocas de tióis que podem limitar a velocidade de redução do peróxido. Neste trabalho, esta questão foi investigada em Saccharomyces cerevisiae (Sc) por meio de cinética de competição com um indicador fluorescente que é específico para ONOO (ácido borônico de cumarina; CBA), com a expectativa de que quanto maior a atividade peroxinitrito redutase, menor a oxidação do indicador. Também foi investigado o papel de duas peroxirredoxinas (Prxs) específicas na remoção deste peróxido. O estudo mostrou que a oxidação do indicador CBA dependente de ONOO foi sempre significativamente maior em células de Saccharomyces cerevisiae deficientes em TPxs (cepa 8) relativo a cepa nativa (WT). Além disso, a transfecção do gene que codifica a Prx mais abundante em Saccharomyces cerevisiae (Tsa1) na cepa 8 diminui parcialmente a oxidação de CBA. Além disso, a oxidação de CBA foi maior na cepa deficiente apenas da peroxirredoxina Tsa1 (a mais abundante da família) relativo à cepa WT, mostrando a relevância desta isoforma especificamente. De forma adversa, a oxidação de CBA na cepa deficiente da peroxirredoxina Tsa2 foi semelhante à cepa WT. Também, foi constatado que o processo de remoção de ONOO é catalítico (e não estequiométrico) para crescentes fluxos de peroxinitrito em todas as cepas e condições utilizadas no estudo. Finalmente, o estudo sugere que células possuem sistemas catalíticos peroxinitrito redutase redundantes, já que a própria cepa 8 apresenta e pode modular esta atividade. Estes resultados confirmam a expectativa da relevância de TPxs na remoção de ONOO e por extensão de outros peróxidos biologicamente relevantes e são a primeira evidência direta e em tempo real da atividade peroxinitrito redutase de TPxs em células. / The purified Thiol Peroxidases family (TPxs - Peroxiredoxins and Glutathione peroxidases) rapidly reduces peroxides (peroxynitrite, ONOOH/ONOO-, hydrogen peroxide, H2O2), but no direct evidence of this activity has been demonstrated in living cells. This is particularly important since the catalytic cycle of the TPxs peroxide reductase activity depends on successive thiol exchange reactions, which may limit the rate of peroxide reduction. In this work, this question was investigated in Saccharomyces cerevisiae (Sc) by competition kinetics using a fluorescent indicator that is specific for ONOO- (coumarin boronic acid; CBA). It is expected that the higher the peroxynitrite reductase activity, the lower the oxidation of the indicator. The role of two specific peroxiredoxins (Prxs) in the removal of this peroxide has also been investigated. The study showed that the oxidation of ONOO- dependent CBA indicator was always significantly higher in TPxs-deficient Saccharomyces cerevisiae cells (strain 8) compared to the native strain (WT). In addition, the transfection of the gene encoding the most abundant Prx into Saccharomyces cerevisiae (Tsa1) in the 8 strain partially diminishes CBA oxidation. Besides that, CBA oxidation was greater in the deficient strain only of the peroxiredoxin Tsa1 (the most abundant in the family) compared to the WT strain, showing the relevance of this isoform specifically. On the other hand, CBA oxidation in the deficient strain of the Tsa2 peroxiredoxin was similar to the WT strain. Also, it was found that the ONOO- removal process is catalytic (and not stoichiometric) for increasing peroxynitrite fluxes in all strains and conditions used in the study. Finally, the study suggests that cells have redundant peroxynitrite reductase catalytic systems, since the 8 strain itself presents and can modulate this activity. These results confirm the expectation of the relevance of TPxs in the removal of ONOO- and by extension of other biologically relevant peroxides and are the first direct and real-time evidence of peroxynitrite reductase activity of TPxs in cells.
10

Oxidação e nitração de proteínas mediadas por peroxinitrito e peroxidases. Mecanismos, inibição por tempol e implicações patofisiológicas / Oxidation and nitration of proteins by peroxynitrite and peroxidases. Mechanisms, tempol inhibition and patophysiological implications

Vaz, Sandra Muntz 29 January 2008 (has links)
Os oxidantes derivados do peroxinitrito e das peroxidases, como mieloperoxidase (MPO), e os danos que ocasionam em proteínas vêm sendo muito estudados pela sua relevância em processos inflamatórios. Neste trabalho, as proteínas RNase e lisozima foram empregadas como alvos de oxidação e nitração mediadas por peroxinitrito e MPO/H<SUB.2O2/NO2-. Experimentos de EPR indicaram que as oxidações envolvem a formação de radicais protéicos sendo que os principais foram caracterizados como RNase-tirosila e lisozima-tirosila exposto e não exposto ao solvente, respectivamente. Estimativas do rendimento de radicais protéicos e produtos nitrados nos pHs 5,4, 6,4 e 7,4 mostrou que o peroxinitrito e o sistema MPO/H<SUB.2O2/NO2- são oxidantes mais efetivos nos pHs 7,4 e 5,4, respectivamente. Na condição ótima para cada oxidante foram identificados produtos de oxidação/nitração de resíduos de Tyr e Trp por HPLC-UV/MS-ESI. Para localização dos resíduos modificados nas estruturas das proteínas tratadas, elas foram digeridas com tripsina e os peptídeos resultantes submetidos a análise por HPLC/MS-MALDI-ToF. Desses resultados pode-se concluir que a RNase foi nitrada preferencialmente nos fragmentos contendo o(s)resíduo(s) Tyr115 > Tyr92/97 > Tyr73/76 por peroxinitrito e em praticamente todos os resíduos de tirosina por MPOH<SUB.2O2/NO2-. No caso da lisozima, o peroxinitrito oxidou principalmente o fragmento contendo os resíduos Trp62/63 que se mostrou nitrado e oxidado a dímero e quinurenina. Já o sistema MPO/H<SUB.2O2/NO2- nitrou o fragmento contendo os resíduos Tyr23/28 e nitrou e oxidou a dímeros e quinurenina o fragmento contendo os resíduos Trp62/63. As relações entre a acessibilidade dos resíduos específicos nas estruturas terciárias e a formação de produtos de oxidação/nitração são discutidas. Também, a possível importância da oxidação de resíduos de triptofano em agregação de proteínas é enfatizada. Paralelamente, examinou-se os efeitos do nitróxido tempol sobre a nitração da RNase mediada por MPO ou HRP/H<SUB.2O2/NO2- em condições de máxima nitração. De fato, as interações de tempol com peroxidases eram pouco conhecidas apesar da eficiência do nitróxido em reduzir a injúria e os níveis de 3-nitrotirosina em proteínas de tecidos de animais submetidos a condições inflamatórias. Foram determinadas as constantes de velocidade da reação do tempol com os intermediários oxidantes da MPO e HRP e também, o consumo de reagentes e a formação de produtos. A simulação dos resultados experimentais indicou que o tempol inibe a nitração da RNase mediada por peroxidases principalmente pela sua capacidade de reagir rapidamente com o &#8226;NO2 com formação de nitrito e cátion oxamônio que, por sua vez, recicla para tempol reagindo com H2O2 para produzir O2. / The oxidants derived from peroxynitrite and peroxidase enzymes, such as myeloperoxidase (MPO), and the lesions they promote in proteins are being extensively investigated because of their relevance in inflammatory processes. Here, the proteins RNase and lysozyme were employed as targets of oxidations/nitrations mediated by peroxynitrite and MPO/H<SUB.2O2/NO2-. EPR experiments showed that the oxidations produced protein radicals of which the prominent ones were characterized as RNase-tyrosyl and lysozyme-tyrosil solvent-exposed and non-exposed, respectively. Estimates of protein radical and nitrated product yields at pH 5.4, 6.4 and 7.4 indicated that peroxynitrite and MPO/H<SUB.2O2/NO2- were more effective oxidants at pH 7.4 and 5.4, respectively. At the best condition for each oxidant, the oxidation/nitration products of Tyr and Trp residues were identified by HPLC-UV/ESI-MS analysis. The site of oxidation in the protein structures were identified by HPLC/MALDI-ToF-MS analysis of tryptic digests after oxidative treatment. From these results, it was concluded that RNase was nitrated mainly in Tyr115 > Tyr92/97 > Tyr62/63 by peroxynitrite and in all Tyr by MPO/H<SUB.2O2/NO2-. In the case of lysozyme, peroxynitrite modified mainly Trp62/63 that resulted nitrated and oxidized to a dimer and kynurenine. The MPO/H<SUB.2O2/NO2- system promoted the nitration of Tyr23/Trp28 and nitration and oxidation to dimer and kynurenine of Trp62/63. The relationships between residue accessibility in the structure of the proteins and their oxidation/nitration are discussed. The possible importance of Trp oxidation in protein aggregation is emphasized. In parallel, the effects of the nitroxide tempol upon RNase nitration mediated by MPO or HRP/H<SUB.2O2/NO2- was examined. Indeed, the interactions of tempol with peroxidases have been little investigated although the nitroxide is very efficient in reducing injury and 3-nitrotyrosine protein levels in tissues of animals submitted to inflammatory conditions. The second order rate constants of tempol reactions with the ferryl oxidants of MPO and HRP were determined. The consumption of reactants and formation of products were also determined. Computer simulation of the results indicated that tempol inhibits RNAse nitration mediated by peroxidases mainly because of its capability to rapidly react with &#8226;NO2 with formation of nitrite and the oxammonium cation, which, in turn, recycles back to tempol, by reacting with H2O2 to produce O2.

Page generated in 0.0303 seconds