• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bringing Fault Tolerance to Hardware Managers in PESNet

Lee, Yoon-Soo 25 September 2006 (has links)
The goal of this research is to improve the communications protocol for Dual Ring Power Electronics Systems called PESNet. The thesis will focus on making the protocol operate in a more reliable manner by tolerating Hardware Manager failures and allowing failover among duplicate Hardware Managers within PEBB-based systems. In order to make this possible, two new features must be added to PESNet: utilization of the secondary ring for fault-tolerant communication, and dynamic reconfiguration of the network. Many ideas for supporting fault tolerance have been discussed in previous work and the hardware for PEBB-based systems was designed so support fault tolerance. However, in spite of the capabilities of the hardware, fault tolerance is not supported yet by existing firmware or software. Improving the PESNet protocol to tolerate Hardware Manager failures will increase the reliability of power electronics systems. Moreover, the additional features that are needed to perform failover also allow recovery from link failures and make hot-swap or plug-and-play of PEBBs possible. Since power electronics systems are real-time systems, it is critical that packets be delivered as soon as possible to their destination. The network latency will limit the granularity of time that the control application can operate on. As a result, methods to implement the required features to meet real-time system requirements are discussed and changes to the protocol are proposed. Changing PESNet will provide reliability gains, depending on the reliability of the components that are used to construct the system. / Master of Science

Page generated in 0.0201 seconds