• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

IRON AND IRON OXIDE FUNCTIONALIZED MEMBRANES WITH APPLICATIONS TO SELECTED CHLORO-ORGANIC AND METAL REMOVAL FROM WATER

Gui, Minghui 01 January 2014 (has links)
The development of functionalized membranes with tunable pores and catalytic properties provides us an opportunity to manipulate the membrane pore structure, selectivity and reactivity. By introducing the functional groups into membrane pores, dissolved metal ions and reactive particles can be effectively immobilized within the polymer matrix for toxic chloro-organic and heavy metal remediation in water. A polyelectrolyte functionalized membrane platform with tunable pore size and ion exchange capacity has been developed for iron/iron oxide nano-catalyst synthesis and chlorinated organic compound (trichloroethylene, TCE and polychlorinated biphenyls, PCBs) degradation. Highly robust polyvinylidene fluoride (PVDF) microfiltration membranes are used as the support with cross-linked polyacrylic acid (PAA) filled in the pores. By varying the environmental pH, PAA hydrogels have either swelling or collapsing behavior, resulting in different effective membrane pore sizes for different separation purposes. Cation exchange groups (i.e. carboxyl groups) in PAA chains prevent the aggregation and leaching of nanoparticles (NPs) during in-situ synthesis and reaction. Depending on the catalyst loading and residence time, TCE and PCBs can be completely degraded by reduction of zero-valent iron and bimetallic iron/palladium NPs, or iron oxide catalyzed free radical oxidation at near-neutral pH. Biphenyl from PCB dechlorination can be further oxidized by hydroxyl radicals (OH•) generated from hydrogen peroxide (H2O2) decomposition. Hydroxybiphenyls and benzoic acid are identified as oxidation products. Line scan and elemental mapping in transmission electron microscopy (TEM) and X-ray photo electron spectroscopy (XPS) characterizations are conducted to understand the effect of iron surface transformation on NP reactivity, and to optimize the membrane functionalization. The same platform can also be used to remove toxic metal selenium in the scrubber water of coal-fired power plants. By reducing the salt concentration in water or increasing the residence time and temperature, the concentration of selenium oxyanions in functionalized membrane permeate can be reduced to less than 10 µg/L. Selenium is captured in membranes by both iron reduction to metallic selenium and iron oxide adsorption. The full-scale flat sheet functionalized membrane and spiral wound modules have also been developed. Iron NPs with alterable loadings are successfully synthesized inside the membrane module for real water applications.
12

A study of particle structure and film formation mechanism on the mechanical properties of synthetic rubber films

Tungchaiwattana, Somjit January 2014 (has links)
This thesis investigated a new group of poly(Bd)/poly(Bd-co-MAA) core-shell particles that were ionically crosslinked and cast as nanostructured ionomer films from aqueous dispersions. The new group of poly(Bd)/poly(Bd-co-MAA) core-shell particles were studied for structure-property relationships and morphology. The covalent crosslinking content in the core and the shell were varied at constant ionic crosslinking. Stress-strain data showed control of the nanostructured films. The chain transfer agent used during the preparation of the nanoparticles core-shells was shown to independently tune the mechanical properties of the films.
13

Isoporous Block Copolymer Membranes: Novel Modification Routes and Selected Applications

Shevate, Rahul 11 1900 (has links)
The primary aim of this work is to explore the potential applications of isoporous block copolymer membranes. Block copolymers (BCPs) have demonstrated their versatility in the formation of isoporous membranes. However, application spectrum of these isoporous membranes can be further broadened by exploring the technical aspects, such as desired surface chemistry, well-defined pore size, appropriate pore density, stimuli responsive behavior, and by imparting desired functionalities through chemical modifications. We believe, by exploring these possibilities, isoporous membranes hold tremendous potential as high performance next generation separation membranes. Motivated by these attractive prospects we systematically investigated novel routes for modification of isoporous membranes and their implications on properties and performance of the membranes for various applications. In this work, polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP) has been selected to fabricate isoporous membranes using non-solvent induced phase separation (NIPS). We selected PS-b-P4VP since its well-defined isoporous morphology is studied in detail and it is extensively characterized. In order to further widen the application bandwidth of BCP membranes, it is desirable to integrate different functionalities in the BCP architecture through a straightforward approach like post-membrane-modification or fabrication of composite membranes to impart anticipated functionalities. The most critical challenge in this approach is to retain the well-defined nanoporous morphology of BCP membranes. We focused on exploring new routes for chemical functionalization of isoporous PS-b-P4VP membranes via various in-situ and post-membrane fabrication approaches. To date, most of the work reported in the literature on PS-b-P4VP presented different routes to fabricate isoporous membranes and their conventional performance in liquid separations. Few efforts have been dedicated to alter the chemistry of PS-b-P4VP membranes by tuning the reactivity of the chemically active P4VP block or the surface chemistry to enhance the membrane performance for desired applications. During the Ph.D. study, we primarily focused on: (i) post modification approach, (ii) surface modification and (iii) in-situ membrane modification approach for fabrication of the mixed-matrix nanoporous membranes without altering the isoporous morphology of the membrane. The membranes fabricated using the mentioned above routes were tested for different applications like stimuli-responsive separations, self-cleaning membranes, protein separations and high-performance humidity sensors.
14

Synthèse et caractérisation de systèmes micellaires stimuli-sensibles à partir d’huile de lin / Synthesis and characterisation of stimuli-responsives micellar systems from linseed oil

El Asmar, Arlette 03 November 2017 (has links)
L'intérêt des copolymères amphiphiles se retrouve dans de multiples applications telles que le: supports catalytique, la bio-séparation ou encore la vectorisation de principe actif. L'étude de leu auto-association sous forme micellaire est très étendue notamment via l'utilisation de polymère: intelligents. Cette classe de polymères présente un changement de comportement lors d'un modification de son environnement. Ainsi des polymères pH et thermo-sensibles ont été sélectionnés dans le but d'étudier des systèmes micellaires composés d'un cœur hydrophobe issus de l'huile de lin et d'une couronne hydrophile stimuli-sensible. Cependant, pour chaque application visée, la synthèse de macromolécules de composition et/ou d'architecture complexe possédant de nouvelles propriétés est nécessaire. Afin de contourner les limitations de cette approche, uni alternative reposant sur le mélange physique de copolymères a été étudiée dans le but de moduler les propriétés et combiner deux sensibilités. / Amphiphilic copolymers have attracted a large interest as they find numerous applications in catalyst support, bio-separation devices and drug delivery systems. Their auto-association in aqueous media forming micelles are well-studied, particularly by the use of smart polymers which display a significant physicochemical change in response to modification of their environment. In this work, pH and temperature responsive polymers have been studied for the elaboration of micellar systems composed of a hydrophobic core from linseed oil and hydrophilic stimuli-sensitive coronna. However the common approach is to design one specific macromolecule for one given application, with sometimes complex composition and/or architecture. We aim to investigate a straight-forward pathway towards micellar systems with finely tuned sensitivities by the cooperative self-assembly of two different copolymers to manipulate the physico-chemical behavior of the final mixed system.
15

Self-Assembly of Stimuli-Responsive and Multicomponent Nanostructures

Mason, McKensie January 2021 (has links)
No description available.
16

The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass

Swift, Thomas, Swanson, L., Geoghegan, M., Rimmer, Stephen 21 January 2016 (has links)
yes / Fluorescence spectroscopy on a series of aqueous solutions of poly(acrylic acid) containing a luminescent label showed that polymers with molar mass, Mn < 16.5 kDa did not exhibit a pH responsive conformational change, which is typical of higher molar mass poly(acrylic acid). Below this molar mass, polymers remained in an extended conformation, regardless of pH. Above this molar mass, a pH-dependent conformational change was observed. Diffusion-ordered nuclear magnetic resonance spectroscopy confirmed that low molar mass polymers did not undergo a conformational transition, although large molar mass polymers did exhibit pH-dependent diffusion. / Engineering and Physical Sciences Research Council (EPSRC) funded CASE award PhD. Part funded by flocculant manufacturer SNF (UK) Ltd.
17

Tuning the aggregation behavior of pH-responsive micelles by copolymerization

Wright, D.B., Patterson, J.P., Pitto-Barry, Anaïs, Cotenda, P., Chassenieux, C., Colombani, O., O'Reilly, R.K. 25 February 2015 (has links)
Yes / Amphiphilic diblock copolymers, poly(2-(diethylamino)ethyl methacrylate-co-2-(dimethylamino)ethyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate), P(DEAEMA-co-DMAEMA)-b-PDMAEMA with various amounts of DEAEMA have been synthesized by RAFT polymerization. Their micellization in water has been investigated by scattering measurements over a wide pH range. It appeared that the polymers self-assembled into pH sensitive star like micelles. For a given composition, when the pH is varied the extent of aggregation can be tuned reversibly by orders of magnitude. By varying the copolymer composition in the hydrophobic block, the onset and extent of aggregation were shifted with respect to pH. This class of diblock copolymer offers the possibility to select the range of stimuli-responsiveness that is useful for a given application, which can rarely be achieved with conventional diblock copolymers consisting of homopolymeric blocks. / European Science Foundation (ESF), Engineering and Physical Sciences Research Council (EPSRC), BP (Firm), Birmingham Science City, Advantage West Midlands (AWM), European Regional Development Fund (ERDF)
18

Self-Assembling Peptide Amphiphile Contrast Agents as a Tumor Diagnostic Tool

Haverick, Mark Anthony 20 October 2011 (has links)
No description available.
19

Fundamental Characterization and Technical Aspects of a Chelating Surfactant

Svanedal, Ida January 2014 (has links)
The purpose of this study was to investigate the fundamental characteristics of a chelating surfactant in terms of solution behaviour, chelation of divalent metal ions, and interaction in mixtures with different foaming agents and divalent metal ion, as well as examining its prospects in some practical applications. Chelating surfactants are functional molecules, with both surface active and chelating properties, which are water soluble and therefore suitable for chelation in many aqueous environments. The dual functionality offers the possibility to recover the chelating surfactant as well as the metals. The DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 4-C12-DTPA (2-dodecyldiethylenetriaminepentaacetic acid) was synthesized at Mid Sweden University. In the absence of metal ions, all eight donor atoms in the headgroup of 4-C12-DTPA are titrating and the headgroup charge can be tuned from +3 to -5 by altering the pH. The solution properties, studied by surface tension measurements and NMR diffusometry, were consequently found strongly pH dependent. pH measurements of chelating surfactant solutions as a function of concentration was used to extract information regarding the interaction between surfactants in the aggregation process. Small differences in the conditional stability constants (log K) between coordination complexes of DTPA and 4-C12-DTPA, determined by competition measurements utilizing electrospray ionization mass spectrometry (ESI-MS), indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. This was further confirmed in hydrogen peroxide bleaching of thermomechanical pulp (TMP) treated with 4-C12-DTPA. Interaction parameters for mixed systems of 4-C12-DTPA and different foaming agents were calculated following the approach of Rubingh’s regular solution theory. The mixtures were also examined with addition of divalent metal ions in equimolar ratio to the chelating surfactant. Strong correlation was found between the interaction parameter and the phase transfer efficiency of Ni2+ ions during flotations. Furthermore, a significant difference in log K between different metal complexes with 4-C12-DTPA enabled selective recovery of the metal ion with the highest log K. The findings in this study contribute to the understanding of the fundamental characteristics of chelating surfactants, which can be further utilized in practical applications.
20

Solution Manipulation of Single-Walled Carbon Nanotubes and Their Applications in Electrochemistry

Wang, Dan 24 April 2009 (has links)
No description available.

Page generated in 0.0379 seconds