1 |
Phase stability of titanium alloys : a first principles studyTegner, Bengt Erik January 2014 (has links)
One of the central questions of materials science is which crystallographic structure a certain alloy or compound will adopt as a function of elemental composition, pressure and temperature. This question can be traced back all the way from the Bronze Age via the first steel makers of the Middle Ages and the metallurgists of the 19th century to the present day. Experiences drawn from centuries of alloy making have given rise to well-established rules of thumb for alloy development and detailed phase diagrams for equilibrium conditions. However, a rigorous theory for single-phase alloys out of equilibrium is less well established. This study employs state-of-the-art electronic structure calculations based on density functional theory to tackle this problem. This method employs a reformulation of quantum mechanics to solve the many-body Schrodinger equation that describes the system. In our case, the system is a titanium alloy, where titanium is substitutionally alloyed with elements such as aluminium, chromium, vanadium and molybdenum. We find that chromium and vanadium stabilise the β phase, while scandium destabilises it. The strength of this effect is directly proportional to the additional d-electrons present in the alloying element. The effect appears to be additive, and the positional effects of the alloying atoms appear to be small. Using the results from the calculations we can construct new phase diagrams and equations of state for these alloys. This gives us a theoretical confirmation for established rules of thumb and provides us with new insights when constructing new alloys.
|
2 |
Phase stability in bulk crystallized syndiotactic polystyreneSu, Chiu-Hun 21 July 2007 (has links)
Simultaneous differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle X-ray scattering (WAXS) measurements were adopted for more precise determination of the equilibrium melting temperatures (Tm*) of a and b phases in bulk-crystallized syndiotactic polystyrene. On the basis of Kratky-Porod approximation, a new method for determining crystalline lamellar thickness from SAXS profiles obtained at high temperatures where there are only limited number of discrete crystalline lamellae dispersed in the melt matrix was developed. This method is shown to be reliable as it gave comparable results obtained from the conventional 1D correlation function method for SAXS profiles obtained at lower temperatures where lamellae are closely stacked. Results of the subsequent Gibbs-Thomson analysis indicated that the trigonal a phase is the entropically favored high temperature phase with Tm* = 355 oC whereas the b phase is enthalpically favored at lower temperatures, with Tm* = 314 oC. Compared to previous held contention in the temperature-dependent phase stability of these two phases, the current phase stability assignment is more consistent with both the density and the symmetry of the corresponding crystal structures. It also explains various observations reported previously on the competition between the two polymorphs during crystallization and during melting.
|
3 |
Efeitos da adicao do NiO na densificacao, na microestrutura e na condutividade eletrica da zirconia totalmente estabilizada com itria / Effects of NiO addition on the densification, microstructure and electrical conductivity of yttria fully-stabilized zirconiaBATISTA, RAFAEL M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:21Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:37Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP / FAPESP:07/56298-7
|
4 |
Efeitos da adicao do NiO na densificacao, na microestrutura e na condutividade eletrica da zirconia totalmente estabilizada com itria / Effects of NiO addition on the densification, microstructure and electrical conductivity of yttria fully-stabilized zirconiaBATISTA, RAFAEL M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:21Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:37Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Os efeitos decorrentes da adição de NiO na densificação, na microestrutura e na condutividade elétrica da zircônia totalmente estabilizada com ítria foram sistematicamente estudados. Zircônia-8% mol de ítria (8YSZ) comercial e acetato, trihidróxi-carbonato, nitrato e óxido de níquel foram utilizados como materiais de partida. Os teores de Ni variaram entre 0,5% e 5% em mol e as composições foram preparadas por mistura dos materiais precursores a partir das concentrações estequiométricas. Estudos de densificação realizados por meio de medidas de densidade geométrica e dilatometria revelaram que a retração total até 1400ºC varia de ~16 até ~20% dependendo do precursor de níquel. No segundo estágio de sinterização a retração linear aumentou com o aumento no teor do aditivo (precursor: trihidróxi-carbonato de níquel). No estágio inicial de sinterização a energia de ativação para a difusão via contornos de grão varia de acordo com o precursor de níquel utilizado sendo menor para o óxido e maior para o trihidróxi-carbonato. No estágio secundário de sinterização prevalece a sinterização volumétrica. Neste estágio, as temperaturas de máxima retração são independentes do precursor de níquel, exceto para o acetato. O tamanho médio de cristalito variou com o tipo de precursor empregado sendo menor para o trihidróxi-carbonato e maior para o óxido de níquel. O limite de solubilidade do NiO determinado por difração de raios X é 1,48% em mol a 1350ºC. Para teores acima do limite de solubilidade o aditivo permanece aleatoriamente distribuído como uma fase secundária na forma de NiO. O principal efeito do aditivo na microestrutura é aumentar o tamanho médio de grãos. Os resultados de medidas elétricas revelaram que a adição de NiO não produz alterações significativas na condutividade intragranular da 8YSZ para diversos tempos de sinterização, exceto quando o precursor é o óxido de níquel, para o qual a condutividade elétrica aumenta com o tempo de sinterização evidenciando a dificuldade na formação de solução sólida, quando o material precursor possui tamanho de cristalito superior ao da matriz. Entretanto, a condutividade intragranular nas amostras preparadas com o trihidróxi-carbonato de nickel é pouco inferior à das demais amostras. Nas amostras sinterizadas por 15 h a 1350ºC um terceiro semicírculo foi associado com a formação de fase tetragonal na 8YSZ, devido à aceleração pelo níquel na cinética da transformação de fase cúbica para tetragonal. A condutividade intergranular varia com o tempo de sinterização devido à diminuição na fração de interfaces (contornos de grão) que ocorre com o aumento no tamanho médio de grãos. A condutividade intergranular microscópica da 8YSZ não varia significativamente com a adição de NiO. / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP / FAPESP:07/56298-7
|
5 |
Phase Stability in Metallic MultilayersGenc, Arda 18 March 2008 (has links)
No description available.
|
6 |
The Role of Misfit Strain and Oxygen Content on Formation and Evolution of Omega Precipitate in Metastable Beta-titanium AlloysHendrickson, Mandana 12 1900 (has links)
β-Ti alloys are widely used in airframe and biomedical applications due to their high ductility, high hardenability, and low elastic modulus. The phase transformations in β-Ti alloys are rather complex due to formation of metastable phases during various thermo-mechanical treatments. One such critical metastable phase, the hexagonal omega (ω) phase, can form in β-Ti alloys under quenching from the high temperature β phase and/or isothermal aging at intermediate temperature. Despite a substantial amount of reported works on the ω phase, there are several critical issues related to the ω formation need to be resolved, e.g. role of alloying elements and oxygen content. Therefore, this dissertation has attempted to provide insights into ω transformation in low misfit (Ti-Mo) and high misfit (Ti-V) binary systems as well as multicomponent (Ti-Nb-Zr-Ta) alloys.
The evolution of ω structure, morphology and composition from the early stage (β-solution+quenched) to later stages after prolonged aging are systematically investigated by coupling transmission electron microscopy (TEM), atom probe tomography (APT) and high-energy synchrotron X-ray diffraction techniques. The influence of aging temperature and duration on characteristic of ω phase in Ti-Mo, and Ti-V alloys is addressed in details. It is found that compositional changes during aging can alter the structure, size and morphology of ω precipitates. In low misfit alloys, the ellipsoidal morphology of ω phase was retained during isothermal aging, while in high misfit alloys it changed from ellipsoidal to cuboidal morphology after prolonged aging. Secondly, ω transformation in biomedical Ti-Nb-Zr-Ta alloy is probed in which the micro-hardness was sensitive to microstructural changes. Furthermore, the evolution of oxygen concentration in ω precipitates during various aging conditions in binary Ti-Mo and Ti-V alloys are reported. It has been accepted that interstitial elements such as oxygen can largely alter mechanical behavior and the microstructure of Ti-alloys. Recently, oxygen is intentionally added to some biomedical alloys to improve their performances. However, a careful understanding of the effect of oxygen on ω phase transformation is still lacking in the literature. In this work, the role of oxygen on ω phase formation in biomedical TNTZ alloys is investigated. Although it is traditionally accepted that oxygen suppresses ω transformation, our observations revealed contradictory results during isothermal aging of TNZT alloys. The results of our investigations provide a novel insight into understanding the effect of interstitial elements on metastable phase transformation in β-Ti alloys. It is concluded that depending upon the nature of alloying elements and/or the applied thermo-mechanical treatments, oxygen may play a different role in ω transformations.
|
7 |
Phase stability study of Pt-Cr and Ru-Cr binary alloysTibane, Meriam Malebo January 2011 (has links)
Thesis (Ph.D. (Physics)) --University of Limpopo, 2011 / Planewave pseudopotential calculations were conducted to predict the
energetics and phase stability of Pt-Cr and Ru-Cr binary alloys. Validation
of appropriate number of k-points and planewave energy cut-off was carried
out for all studied systems. At the composition of A3B and AB3 (where
A = Cr and B = Pt or Ru) phases, the heats of formation determined for
five different structures, L12, A15, tP16, DOC and DO′
C are almost of the
same magnitude and the relaxed structures show no rotation. We observed
that the cubic L12 Pt3Cr is the most stable structure in agreement with the
experiments. The results for PtCr3 indicate the negative heat of formation for
the A15 phase whereas all the remaining studied phases have positive heats
of formation. It is clear that the PtCr3 (A15) is the most stable structure.
PtCr (L10) was found to be more stable compared with PtCr (B2) phase. The
L12 Pt3Cr, A15 PtCr3 and L10 PtCr phases could be considered as possible
coatings to cover the engines which are exposed to aggresive environments.
The heats of formation of all studied compositions and phases of Ru-Cr
systems are positive, these results suggest that, generally, studied Ru-Cr
phases are not stable. The effect of pressure and doping were investigated on
A15 RuCr3 structure which was reported to exist at a higher temperature.
Elastic constants and moduli were investigated to determine the strength
of the PtCr systems. The strength of PtCr L10 is greater than that of B2
phase. The ratio of shear to bulk modulus (G/B) has been used to predict
the ductility or the brittleness of the material. It was found that Pt3Cr L12
is the most ductile phase among those considered in this study. The density of states were calculated to further analyze the stability of systems.
The magnetic properties of Cr were studied using VASP which predicted an
anti-ferromagnetic and a non-magnetic ground state for pure Cr. We have
investigated the thermal stability at 0 GPa for different phases of Pt3Cr,
PtCr3, PtCr and RuCr3 A15 phase, where we detected the soft modes at
X, G, M and R points of the Brillouin zone from the phonon spectra of
Pt3Cr A15 phase. Pt3Cr L12 and PtCr3 A15 are predicted as dynamically
stable structures. RuCr3 A15 phase was found to be dynamically stable
but thermodynamically unstable. Phonon DOS were studied to observe the
modes of vibration and atoms that contribute to soft modes. Lastly we investigated the thermal expansion of Pt3Cr L12 and A15 phases. / The National Research Foundation,and the South African Gas Turbine Research Program
|
8 |
Automatic generation of global phase equilibrium diagram from equation of statePatel, Keyurkumar S 01 June 2007 (has links)
A computational tool that uses an automated and reliable procedure for systematic generation of global phase equilibrium diagram (GPED) is developed for binary system using equation of state and its extension to the ternary system is discussed. The proposed algorithm can handle solid phase and also can predict all major six types of phase diagrams. The procedure enables automatic generation of GPED which incorporates calculations of all important landmarks such as critical endpoints, quadruple point (if any), critical line, liquid-liquid-vapor line (if any), solid-liquid-liquid line (if any) and solid-liquid-vapor line. The method is also capable of locating all azeotropic phenomena such as azeotropic endpoint, critical azeotrope, pure azeotropic point and azeotropic lines. Although, we demonstrated the methodology for cubic equation of state, the proposed strategy is completely general that doesn't require any knowledge about the type of phase diagram and can be applied to any pressure explicit equation of state model. Newton homotopy based global method has been applied for phase stability test and critical point calculations to ensure reliability. Having computed the binary phase diagrams, the methodology to generate global phase diagrams for ternary system is discussed that can locate all important thermodynamic landmarks such as tricritical point, quadruple critical endpoint, quadruple azeotropic endpoint, quintuple point and critical azeotropic endpoint. The procedure to trace ternary phenomena having two degree of freedom such as critical surface, solid-liquid-vapor surface and liquid-liquid-vapor surface has been discussed. Finally, applications of reliable global methods to solve the fluid-fluid phase equilibrium problem using SAFT equation for binary system and the solid-fluid phase equilibrium problem for binary and ternary systems have been demonstrated through representative computations.
|
9 |
Bulk Hydrides and Delayed Hydride Cracking in Zirconium AlloysTULK, ERIC 24 January 2012 (has links)
Zirconium alloys are susceptible to engineering problems associated with the uptake of hydrogen throughout their design lifetime in nuclear reactors. Understanding of hydrogen embrittlement associated with the precipitation of brittle hydride phases and a sub-critical crack growth mechanism known as Delayed Hydride Cracking (DHC) is required to provide the engineering justifications for safe reactor operation.
The nature of bulk zirconium hydrides at low concentrations (< 100 wt. ppm) is subject to several contradictory descriptions in the literature associated with the stability and metastability of γ-phase zirconium hydride. Due to the differing volume expansions (12-17%) and crystallography between γ and δ hydride phases, it is suggested that the matrix yield strength may have an effect on the phase stability. The present work indicated that although yield strength can shift the phase stability, other factors such as microstructure and phase distribution can be as or more important. This suggests that small material differences are the reason for the literature discrepancies.
DHC is characterised by the repeated precipitation, growth, fracture of brittle hydride phases and subsequent crack arrest in the ductile metal. DHC growth is associated primarily the ability of hydrogen to diffuse under a stress induced chemical potential towards a stress raiser. Knowledge of the factors controlling DHC are paramount in being able to appropriately describe DHC for engineering purposes. Most studies characterise DHC upon cooling to the test temperature. DHC upon heating has not been extensively studied and the mechanism by which it occurs is somewhat controversial in the literature. This work shows that previous thermo-mechanical processing of hydrided zirconium can have a significant effect on the dissolution behaviour of the bulk hydride upon heating. DHC tests with γ-quenched, furnace cooled-δ and reoriented bulk hydrides upon heating and DHC upon cooling suggest that the amount of hydrogen in solution is the primary factor controlling the occurrence of DHC and consistent with the postulation that the stress induced chemical potential is the driving force for DHC. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2012-01-24 06:14:14.152
|
10 |
A computer simulation study of liquid crystal phase coexistenceMills, Stuart James January 1999 (has links)
Results are presented from a variety of molecular simulations of phase coexistence using the well established Gay-Berne (GB) liquid crystal model. Firstly, the simulation of bulk phase coexistence using the Gibbs ensemble Monte Carlo technique is presented, both for one and two-component GB systems. The one-component results, using a novel parameterisation of the GB, show a rich phase behaviour, displaying both isotropic and nematic-vapour coexistence, in good comparison with previous studies. A method for arriving at the two-component parameterisation is then discussed, followed by a novel application of the Gibbs ensemble to the isotropic-nematic transition in two-component systems. Results in broad agreement with theoretical predictions, subject to a large finite size effect, are obtained. Secondly, upon the basis of the one-component Gibbs results, results are presented from a series of molecular dynamics simulations of a free standing GB film in equilibrium with its own saturated vapour. The introduction of inhomogeneity is shown to induce a preferred molecular alignment in the nematic film perpendicular to the liquid-vapour interface. At slightly higher temperatures the nematic film is wet by the isotropic phase, displaying an intermediate ordering regime where the formation of short-lived nematic domains within the film is observed. This effect has been analysed using orientational correlation functions, and shown to result from a decoupling of the planar and perpendicular nematic ordering caused by the system inhomogeneity. A system-size analysis of this effect has also been undertaken, showing a definite increase in the range of decay of these orientational correlations with increasing system size.
|
Page generated in 0.018 seconds