291 |
Effect of Annealing Ferroelectric HfO₂ Thin Films: In Situ, High Temperature X-Ray DiffractionPark, Min Hyuk, Chung, Ching-Chang, Schenk, Tony, Richter, Claudia, Opsomer, Karl, Detavernier, Christophe, Adelmann, Christoph, Jones, Jacob L., Mikolajick, Thomas, Schroeder, Uwe 24 August 2022 (has links)
The ferroelectricity in fluorite oxides has gained increasing interest due to its promising properties for multiple applications in semiconductor as well as energy devices. The structural origin of the unexpected ferroelectricity is now believed to be the formation of a non-centrosymmetric orthorhombic phase with the space group of Pca2₁. However, the factors driving the formation of the ferroelectric phase are still under debate. In this study, to understand the effect of annealing temperature, the crystallization process of doped HfO₂ thin films is analyzed using in situ, high-temperature X-ray diffraction. The change in phase fractions in a multiphase system accompanied with the unit cell volume increase during annealing could be directly observed from X-ray diffraction analyses, and the observations give an information toward understanding the effect of annealing temperature on the structure and electrical properties. A strong coupling between the structure and the electrical properties is reconfirmed from this result.
|
292 |
Lanthanum-Doped Hafnium Oxide: A Robust Ferroelectric MaterialSchroeder, Uwe, Richter, Claudia, Park, Min Hyuk, Schenk, Tony, Pesič, Milan, Hoffmann, Michael, Fengler, Franz P. G., Pohl, Darius, Rellinghaus, Bernd, Zhou, Chuanzhen, Chung, Ching-Chang, Jones, Jacob L., Mikolajick, Thomas 04 October 2022 (has links)
Recently simulation groups have reported the lanthanide series elements as the dopants that have the strongest effect on the stabilization of the ferroelectric non-centrosymmetric orthorhombic phase in hafnium oxide. This finding confirms experimental results for lanthanum and gadolinium showing the highest remanent polarization values of all hafnia-based ferroelectric films until now. However, no comprehensive overview that links structural properties to the electrical performance of the films in detail is available for lanthanide-doped hafnia. La:HfO₂ appears to be a material with a broad window of process parameters, and accordingly, by optimization of the La content in the layer, it is possible to improve the performance of the material significantly. Variations of the La concentration leads to changes in the crystallographic structure in the bulk of the films and at the interfaces to the electrode materials, which impacts the spontaneous polarization, internal bias fields, and with this the field cycling behavior of the capacitor structure. Characterization results are compared to other dopants like Si, Al, and Gd to validate the advantages of the material in applications such as semiconductor memory devices.
|
293 |
Modeling Hydrogen-Bonding in Diblock Copolymer/Homopolymer BlendsDehghan, Kooshkghazi Ashkan 10 1900 (has links)
<p>The phase behavior of AB diblock copolymers mixed with C homopolymers (AB/C), in which A and C are capable of forming hydrogen-bonds, is examined using self-consistent field theory. The study focuses on the modeling of hydrogen-bonding in polymers. Specifically, we examine two models for the formation of hydrogen-bonds between polymer chains. The first commonly used model assumes a large attractive interaction parameter between the A/C monomers. This model reproduces correct phase transition sequences as compared with experiments, but it fails to correctly describe the change of lamellar spacing induced by the addition of the C homopolymers. The second model is based on the fact that hydrogen-bonding leads to A/C complexation. We show that the interpolymer complexation model predicts correctly the order-order phase transition sequences and the decrease of lamellar spacing for strong hydrogen-bonding. Our analysis demonstrates that hydrogen-bonding of polymers should be modeled by interpolymer complexation.</p> / Master of Science (MSc)
|
294 |
Modelling Microstructural Evolution in Materials ScienceOfori-Opoku, Nana 10 1900 (has links)
<p>Continuum atomistic and mesoscopic models are developed and utilized in the context of studying microstructural evolution and phase selection in materials systems. Numerous phenomena are examined, ranging from defect-solute interaction in solid state systems to microstructural evolution under external driving conditions. Emphasis is placed on the derivation and development of models capable of self consistently describing the intricate mechanisms at work in the systems undergoing these phenomena.</p> <p>Namely, grain growth dynamics are studied in nanocrystalline systems under external driving conditions using a newly developed phase-field-crystal model, which couples an additional free energy source term to the standard phase-field-crystal model. Such external driving can be attributed to incident energetic particles. The nanocrystalline system is found to be susceptible to enhanced grain growth as a function of the intensity/flux associated with the external driving and the energy of driving. Static kinetic phase diagram calculations also seem to confirm that systems under external driving conditions can be forced into long metastable states.</p> <p>Early stage solute clustering and precipitation in Al alloys is also examined with a variant of the phase-field-crystal method, so-called structural phase-field-crystal models for multi-component alloys developed as part of this thesis. We find that clustering is aided by quenched-in defects (dislocations), whereby the nucleation barrier is reduced and at times eliminated, a mechanism proposed by Cahn for a single dislocation for spinodal systems. In a three-component system, we predict a multi-step mechanism for clustering, where the nature and amount of the third species plays an important role in relieving stresses caused by the quenched-in dislocations before clustering, i.e., segregation as predicted by the equilibrium phase diagram, can occur.</p> <p>Finally, we present a new coarse-graining procedure for generating complex amplitude models, i.e., complex order-parameter phase-field models, derived from phase-field-crystal models. They retain many salient atomistic features and behaviours of the original phase-field-crystal model, however is now capable of describing mesoscopic length scales like the phase-field model. We demonstrate the scheme by generating an amplitude model of the two-dimensional structural phase-fieldcrystal model, which allows multiple crystal structures to be stable in equilibrium, a crucial aspect of proper multi-scale modelling of materials systems. The dynamics are demonstrated by examining solidification and coarsening, peritectic growth, along with grain growth and the emergence of secondary phases.</p> / Doctor of Science (PhD)
|
295 |
PHASE FIELD CRYSTAL STUDIES OF STRAIN-MEDIATED EFFECTS IN THE THERMODYNAMICS AND KINETICS OF INTERFACESStolle, Jonathan F. E. 04 1900 (has links)
<p>In this dissertation, the Phase Field Crystal (PFC) Method is used to study a number of problems in which interfaces and elastic effects play important roles in alloys. In particular, the three topics covered in this work are grain boundary thermodynamics in alloys, dislocation-mediated formation of clusters in binary and ternary alloys, and solutal effects in explosive crystallization. Physical phenomena associated with grain boundaries, such as Read-Shockley-like behaviour and Gibbs adsorp- tion theorem, were shown to be accurately captured in both PFC- and XPFC-type models. In fact, a connection between the solute segregation behaviour and physical properties of the system—such as energy of mixing, mismatch, and undercooling—were shown. Also, grain boundary premelting was investigated. It was shown how solute can change the disjoining potential of a grain boundary and a mechanism for hysteresis in grain boundary premelting was discussed. Regarding the phenomenon of cluster formation, a general coexistence approach and a nucleation-like approach were used to describe the mechanism consistently with observations; the process is facilitated by lowering the energy increase associated with it. The final phenomenon studied was explosive crystallization. It was shown that the temperature oscillations due to unsteady motion of an interface could be captured with PFC-type models and that this behaviour leaves patterns, such as solute traces, in the material. The versatility of this PFC formalism was demonstrated by capturing the underlying physics and elucidating the role of misfit strain in altering interface oscillations during explosive crystallization. Finally, it was demonstrated in all projects how PFC model parameters relate to coarse-grained material properties, thereby connecting these phenomena on larger scales to atomistic-scale properties.</p> / Doctor of Philosophy (PhD)
|
296 |
Phase Transitions, Magnetism and Surface Adsorptions Assessed by Meta-GGA Functionals and Random Phase ApproximationXiao, Bing January 2014 (has links)
The meta-GGA functionals and random phase approximation are tested for phase transitions and a strongly correlated transition metal oxide in this dissertation. One of the latest meta-GGA functionals is also employed to study the van der Waals bound system in surface science. Our main purpose is to reveal the performance of new exchange-correlation functionals on various properties and systems. We are also interested in seeking the possible relationship between the performance of a semilocal functional and its exchange enhancement factor. We have studied the structural phase transitions in crystalline Si (insulator to metal), SiO2 (insulator to insulator) and Zr (metal to metal) systems, as a test of exchange energy semilocal functionals on Jacob's ladder. Our results confirm the energy-geometry dilemma of GGAs in three systems. The most sophisticated non-empirical meta-generalized gradient approximations (meta-GGAs) such as TPSS (Tao-Perdew-Staroveov-Scuseria) and revTPSS (revised TPSS) give better lattice constants than PBE, but the phase transition parameters (energy difference and transition pressure) are smaller and less realistic than those from the latter GGA. However, the recent functionals of meta-GGA made simple family (MGGA_MS) behave differently to those previous meta-GGAs, predicting larger and more realistic phase transition parameters. Meanwhile, MGGA_MS also delivers the equilibrium geometry of crystalline materials similar to previous non-empirical meta-GGAs. In contrast to semilocal functionals, the nonlocal functionals such as the range-separated hybrid functional HSE06 (Heyd-Scuseria-Ernzerhof) and non-self consistent random phase approximation (RPA) are not only able to give the accurate equilibrium geometry , but also predict the realistic phase transition parameters for Si and SiO2 systems. The ground state of rutile-type vanadium dioxide (R-VO2) represents a great challenge to the current density functional theory. In this dissertation, we investigated the electronic structures and magnetism of R-VO2 using exchange-correlation functionals of all five rungs on Jacob's ladder. Our calculations show that all semilocal functionals (LSDA, GGAs and meta-GGAs) and hybrid functionals (HSE06) stabilize the spin-polarized states (ferromagnetic and anti-ferromagnetic states) over non-magnetic state, which are completely opposite to experimental observation. Surprisingly, LSDA gives the best energetic descriptions for magnetic and non-magnetic phases of R-VO2 among semilocal functionals and HSE06. Otherwise, RPA calculations are highly dependent on the inputs in the spin polarized case. With PBE inputs, RPA also fails, giving lower energies for spin-polarized states than for the non-magnetic phase. Meanwhile, the results are reversed using LSDA inputs. From the computed equilibrium cell volume, we observe the error cancellation in the exchange-correlation hole of most semilocal functionals in the spin-polarized calculations. LSDA and RPA do not fit to this picture. By analyzing the local magnetic moments of vanadium atoms, it is found that the magnetic property predicted from meta-GGA can be related to its exchange enhancement factor. The physisorption of a molecule on a transition metal surface is also another difficult problem in DFT because of the long-range van der Waals interactions. The recently developed MGGA_MS family of density functionals is able to capture a portion of intermediate range dispersion interactions. Therefore, we employed MGGA_MS2 to study the physisorption of CO2 on Pt (111) surface, and the results are compared to those of PBE, PBE+D2 and optB88-vdW methods. The computed binding curves confirm that that MGGA_MS2 indeed captures the van der Waals interactions near the equilibrium binding distance, and the obtained binding distance is also in good agreement with PBE+D2 and optB88-vdW calculations. By computing the electron density difference map (EDDM), we find that the electron densities of CO2 and Pt (111) surface are strongly polarized in optB88-vdW, creating the dipole moments in two subsystems. Such effect is reduced in MGGA_MS2. For PBE, the polarization of electron density is very weak, but not negligible. The α dependence in the exchange enhancement factor of a meta-GGA is the key to capture the intermediate range van der Waals interactions. In summary, a meta-GGA functional can step out of the famous "energy-geometry dilemma" , predicting good lattice constants and phase transition parameters at the same time. With the proper construction, a meta-GGA can even capture a portion of van der Waals interactions. The RPA is usually more accurate than semilocal functionals for many ground state properties. The strongly correlated systems like R-VO2 are still a big challenge to present-day density functional theory. We will continue to seek more accurate exchange-correlation functionals. / Physics
|
297 |
Aplicação da espectroscopia fotoacústica na determinação da temperatura de transição vítrea de polímeros / Photoacoustic spectroscopy applied to glass transition temperature determination of polymersTalita Zanon Guzzo 23 February 2010 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / A espectroscopia fotoacústica (PAS) é uma técnica não destrutiva e muito utilizada na caracterização óptica e térmica de materiais. Ela é baseada no efeito fotoacústico que consiste,
basicamente, na absorção de onda eletromagnética modulada e na geração de calor no interior do material em estudo (amostra), via processo de desexcitação não-radiativa. Dentre as muitas aplicações relacionadas à caracterização de materiais, recentemente, a técnica PAS vem sendo
desenvolvida para estudos de transição de fase de segunda ordem. Entretanto, poucos trabalhos são encontrados na literatura com relação à aplicação da técnica PAS ao estudo da
transição vítrea. Neste contexto, o objetivo deste trabalho é o de aplicar a técnica PAS na determinação da temperatura de transição vítrea de materiais poliméricos, de uma maneira
inovadora com relação à célula fotoacústica e ao sistema de aquecimento. Para isso foi projetada e construída uma célula fotoacústica que possibilita a variação de temperatura da
amostra, sem afetar a curva de resposta do microfone. Foi desenvolvido um sistema de aquecimento baseado no efeito Peltier, possibilitando fazer rampas de subida de temperatura,
com várias velocidades, da temperatura ambiente até 130 C, de forma linear. Todo o aparato experimental foi testado e aplicado em várias amostras poliméricas: poliamida 6.0 (Nylon);
poliestireno (PS-n1921 e PS-n2380); e poli(tereftalato de etileno) (PET). Os resultados obtidos foram: para o Nylon, ; para o PS-n1921, ; para o PS-n2380, ; e para o PET, . Estes resultados estão de acordo com os respectivos valores da temperatura de transição vítrea encontrados na literatura
e mostram a potencialidade da técnica PAS ao estudo da transição vítrea de materiais poliméricos. / Photoacoustic spectroscopy (PAS) is a non-destructive technique and it has been largely applied to the thermal and optical characterization of materials. PAS technique is
based on the photoacoustic effect which consist, basically, absorption of a modulated electromagnetic radiation and generation of heat inside of the material studied (sample), by a
nonradiative deexcitation processes. Nowadays, among many PAS applications, effort are carried out to apply PAS technique for second-order phase transitions. However, only a few
works can be found in the literature about glass transition studies with PAS technique. In this context, the main goal of this work is to apply PAS technique to determine glass transition
temperature of the polymeric materials, based on the new photoacoustic cell configuration and on the new heating system. In this way, a photoacoustic cell was builted up for
monitoring temperature variation of the sample, where the performance of the microphone was not affected. A heating system was developed based on the Peltier effect, in such way
that it is possible to scan the temperature from the environment one up to 130 C, linearly at several speeds. The experimental apparatus was tested and applied to some polymeric materials: polyamide 6.0 (Nylon); polystyrene (PS-n1921 e PS-n2380); and poli(tereftalato de
etileno) (PET). The results obtained were: Nylon, ; PS-n1921,
; PS-n2380, ; and PET, . These results are in a good agreement with the respective values of glass transition temperature found in the literature and show the PAS technique potentiality for glass transition studies in polymeric materials.
|
298 |
Aplicação da espectroscopia fotoacústica na determinação da temperatura de transição vítrea de polímeros / Photoacoustic spectroscopy applied to glass transition temperature determination of polymersTalita Zanon Guzzo 23 February 2010 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / A espectroscopia fotoacústica (PAS) é uma técnica não destrutiva e muito utilizada na caracterização óptica e térmica de materiais. Ela é baseada no efeito fotoacústico que consiste,
basicamente, na absorção de onda eletromagnética modulada e na geração de calor no interior do material em estudo (amostra), via processo de desexcitação não-radiativa. Dentre as muitas aplicações relacionadas à caracterização de materiais, recentemente, a técnica PAS vem sendo
desenvolvida para estudos de transição de fase de segunda ordem. Entretanto, poucos trabalhos são encontrados na literatura com relação à aplicação da técnica PAS ao estudo da
transição vítrea. Neste contexto, o objetivo deste trabalho é o de aplicar a técnica PAS na determinação da temperatura de transição vítrea de materiais poliméricos, de uma maneira
inovadora com relação à célula fotoacústica e ao sistema de aquecimento. Para isso foi projetada e construída uma célula fotoacústica que possibilita a variação de temperatura da
amostra, sem afetar a curva de resposta do microfone. Foi desenvolvido um sistema de aquecimento baseado no efeito Peltier, possibilitando fazer rampas de subida de temperatura,
com várias velocidades, da temperatura ambiente até 130 C, de forma linear. Todo o aparato experimental foi testado e aplicado em várias amostras poliméricas: poliamida 6.0 (Nylon);
poliestireno (PS-n1921 e PS-n2380); e poli(tereftalato de etileno) (PET). Os resultados obtidos foram: para o Nylon, ; para o PS-n1921, ; para o PS-n2380, ; e para o PET, . Estes resultados estão de acordo com os respectivos valores da temperatura de transição vítrea encontrados na literatura
e mostram a potencialidade da técnica PAS ao estudo da transição vítrea de materiais poliméricos. / Photoacoustic spectroscopy (PAS) is a non-destructive technique and it has been largely applied to the thermal and optical characterization of materials. PAS technique is
based on the photoacoustic effect which consist, basically, absorption of a modulated electromagnetic radiation and generation of heat inside of the material studied (sample), by a
nonradiative deexcitation processes. Nowadays, among many PAS applications, effort are carried out to apply PAS technique for second-order phase transitions. However, only a few
works can be found in the literature about glass transition studies with PAS technique. In this context, the main goal of this work is to apply PAS technique to determine glass transition
temperature of the polymeric materials, based on the new photoacoustic cell configuration and on the new heating system. In this way, a photoacoustic cell was builted up for
monitoring temperature variation of the sample, where the performance of the microphone was not affected. A heating system was developed based on the Peltier effect, in such way
that it is possible to scan the temperature from the environment one up to 130 C, linearly at several speeds. The experimental apparatus was tested and applied to some polymeric materials: polyamide 6.0 (Nylon); polystyrene (PS-n1921 e PS-n2380); and poli(tereftalato de
etileno) (PET). The results obtained were: Nylon, ; PS-n1921,
; PS-n2380, ; and PET, . These results are in a good agreement with the respective values of glass transition temperature found in the literature and show the PAS technique potentiality for glass transition studies in polymeric materials.
|
299 |
Dynamics of isolated quantum many-body systems far from equilibriumSchmitt, Markus 11 January 2018 (has links)
No description available.
|
300 |
Phase Behaviour in Crystalline Solids : Exploring the Structure Guiding Factors Via Polymorphism, Phase Transitions and Charge Density StudiesThomas, Sajesh P January 2013 (has links) (PDF)
The thesis entitled "Phase Behaviour in Crystalline Solids: Exploring the Structure Guiding Factors via Polymorphism, Phase Transitions and Charge Density Studies"
consists of five chapters divided into two parts. A basic introductory section describes the topics relevant to the work and the methods and techniques utilized. Part A contains two chapters that discuss the structural aspects related to polymorphism, solvatomorphism, conformational preferences and phase transitions exhibited by active pharmaceutical ingredients (APIs). It also discusses the structure-property correlations in API crystal forms and the possible utility of second harmonic generation (SHG) for their bulk characterization. Part B has three chapters that discuss experimental and theoretical charge density analyses of intra-and intermolecular interactions that play structure guiding roles in some of the APIs discussed in Part A. The main focus of the present work is to characterize the interaction patterns devoid of strong classical hydrogen bonds. The case studies include multifurcated C - H …O hydrogen bonds, the “carbon bonding” and chalcogen interactions involving Se and S atoms. In addition to charge density studies, in situcryocrystallography and molecular complexation experiments have been employed to examine structural consequences of chalcogen bonding. Further, Appendices 1 and 2 describe phase transition studies on the inorganic mineral kröhnkite and its high temperature phase transitions leading to novel inorganic structural types.
Part A: Polymorphism and phase behaviour in Active Pharmaceutical Ingredients (APIs)
Chapter 1 discusses case studies of polymorphism, supramolecular preference sand phase transitions exhibited by active pharmaceutical ingredients (APIs). Section 1.1 deals with the polymorphism of an anti-oxidant drug candidate ebselen and its hydroxyl derivative. The potential of organoselenium compounds to form a Se…O chalcogen bonded supramolecular recognition unit (synthon) has been established in these polymorphs and its generality is substantiated with the help of a Cambridge Structural Database (CSD) analysis. Section 1.2 demonstrates the utility of the ‘chalcogen bonded supramolecularsynthon’ in generating molecular complexes of APIs. A series of salts and co-crystals of the amyotrophic lateral sclerosis drug Riluzole have been synthesized in order to evaluate the structure directing role of S…O chalcogen bonded synthon in their crystal structures. Section 1.3adescribes the generation of polymorphs and solvatomorphs of the antidepressant drug candidate fenobamand associated phase transitions. The tautomeric preference in this molecule has been rationalized from the crystal structure analysis and abinitioenergy calculations. Further, section 1.3b utilizes chemical derivatization as a means to experimentally simulate thetautomeric preference and molecular conformations in several derivatives of fenobam and thiofenobam. Section 1.4 describes the issue of solvatomorphism and the generation of the fifth solvatomorph of gallic acid, its structural complexity and temperature induced phase transitions. The ability of solvent water molecules to drive structural diversity, by forming ‘hydration synthons’,is demonstrated in this case. Chapter 2 presents a novel methodology for the detection of polymorphic impurities in APIs based on second harmonic generation (SHG).The SHG based method has been employed to polymorphic mixtures of fenobam, hydrochlorothiazide, pyrazinamide, tolbutamide, curcumin, febuxostat and nimesulide.The conventional methods such as powder X-ray diffraction (profile fitting analysis), FT-IR, Raman spectroscopy and thermal analysesto detect the presence of polymorphic impuritiesin bulk API samples are employed on the mixtures of these API samples and the impurity detection limits are compared with the proposed SHG methodology. The APIs used in these case studies were screened for their SHG efficiency using quantum chemical calculations of hyperpolarizability and HOMO-LUMO charge redistribution behaviour. Further, a correlation with the crystal symmetry, relative packing arrangement of molecules and the observed SHG efficiency have been discussed in of some of these cases.
Part B: Exploring the nature and structural consequences of nonbonding interactions in molecular crystals
Chapter 3 discusses the electron density features of quasi-trifurcated CH…Cl/CH…O interaction motifs leading to ‘carbon bonding’ and a trifurcated CH…O hydrogen bond motif. Section 3.1 describes the experimental and theoretical charge density analyses of quasi-trifurcated CH…Cl and CH…O motifsand investigates the existence of “carbon bonding” in solid state. The experimental charge density evidence for “carbon bonding” have been analyzed in cases of fenobam and dimethylamine: 4-hydroxybenzoic acid complex. The existence of this unconventional interaction, which roughly mimics the transition state geometry of SN2 (bimolecular nucleophilic substitution) reaction, is further established by a CSD analysis. Section 3.2 describes the experimental and theoretical charge density analyses of ferulic acid and compares the topological features associated with a trifurcated CH…O hydrogen bond motif, with corresponding strong classical OH…O hydrogen bonds. The study demonstrates the “Gulliver effect” of weak interactions in charge density terms. Charge density based interaction energy calculations via EPMM and EML methods have been utilized in this context to evaluate the relative strength of such interactions. Chapter 4 discusses the charge density features of intermolecular chalcogen bonding interactions involving selenium and sulphur atoms.Section 4.1 describes the experimental and theoretical charge density analyses of ebselen and its hydroxyl derivative. The charge density characterization of the conserved chalcogen bond synthon (discussed in chapter 1, section 1.1) has been carried out and electronic nature and geometric dependence of Se…O interactions have been explored. The mechanism of drug action of ebselen has been correlated with the experimentally observed charge density distribution around the intramolecular SeC and SeN bonds. Section 4.2 explores the homochalcogen interactions such as S…SandSe…Se in phenol analogues. In situ cryocrystallographic studies on thiophenol, selenophenol and their solid solutions are described. Veggard’s law-like behaviour observed in these solid solutions have been rationalized and the S…S and Se…Sehomochalcogen interactions have been evaluated in these liquid systems which are devoid of any other packing forces such as strong hydrogen bonds. Chapter 5 discusses the conformation locking potential of intramolecular S…O chalcogen bonding in sulfadrugs. Section 5.1 discusses conformation locking in the antibioticdrugsulfamethizole. A two pronged approach has been adopted in the study; a) generation of cocrystals and salts of sulfamethizole for the ‘experimental simulation’ of the molecular conformation, b) evaluation of charge density distribution around the intramolecular S…O interaction region in sulfamethizole. Section 5.2 describes the effect of ‘simple hybridized orbital geometry’ in the formation of intramolecular S…O chalcogen bonding. The experimental charge density analysis of the carbonic anhydrase inhibitor drug acetazolamide has been carried out and the two different intramolecular S…O geometries have been compared in terms of the charge density topology. The analysis highlights the advantage of “orbital geometry” consideration over the conventional distance-angle criteria in assessing nonbonded interactions.
|
Page generated in 0.0368 seconds