• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues

Shidore, Neeraj Shripad 2012 May 1900 (has links)
The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL) involved two experiments which looked at a vehicle systems approach to analyze two such technical challenges: Battery life and low battery power at cold (-7 ⁰C) temperature. The first experiment, concerning battery life and its impact on gasoline savings due to a PHEV, evaluates different vehicle control strategies over a pre-defined vehicle drive cycle, in order to identify the control strategy which yields the maximum dollar savings (operating cost) over the life of the vehicle, when compared to a charge sustaining hybrid. Battery life degradation over the life of the vehicle, and fuel economy savings on every trip (daily) are taken into account when calculating the net present value of the gasoline dollars saved. The second experiment evaluates the impact of different vehicle control strategies in heating up the PHEV battery (due to internal ohmic losses) for cold ambient conditions. The impact of low battery power (available to the vehicle powertrain) due to low battery and ambient temperatures has been well documented in literature. The trade-off between the benefits of heating up the battery versus heating up the internal combustion engine are evaluated, using different control strategies, and the control strategy, which provided optimum temperature rise of each component, is identified.

Page generated in 0.0698 seconds