431 |
Resonance Raman studies of halooxide photochemistry in the gas and condensed phase /Esposito, Anthony Paul. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 168-177).
|
432 |
Spectroscopic and computational studies of molecular photochemistry /Parsons, Bradley Frederick. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Chemistry, August 2001. / Includes bibliographical references. Also available on the Internet.
|
433 |
Ketone sensitized photochemical degradation of 2-methoxy-6-methyltetrahydropyranBabcock, Bruce William, January 1980 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1980. / Includes bibliographical references (p. 52).
|
434 |
Syntheses and luminescence studies of di- and polynuclear gold(1) and copper(1) complexes, design strategies towards metalloreceptors and mixed-metal complexes /Cheung, Kai-leung. January 2001 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 324-353).
|
435 |
Molecular rearrangements of photolytically generated carbocationsMladenova, Gabriela. January 2001 (has links)
Thesis (M. Sc.)--York University, 2001. Graduate Programme in Chemistry. / Typescript. Includes bibliographical references (leaves 85-90). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pMQ71609.
|
436 |
Photochemical electron transfer (ET) reaction studies (1) photooxidations of sulfides; (2) development of new ET sensitizers /Liao, Chen, January 2008 (has links)
Thesis (Ph.D.)--University of Wyoming, 2008. / Title from PDF title page (viewed on June 28, 2009). Includes bibliographical references (p. 189-202).
|
437 |
Studies in the photoelectrochemistry of bismuth vanadate using scanning electrochemical microscopyPark, Hyun Seo 04 March 2014 (has links)
Photoelectrochemical studies were performed on bismuth vanadate (BiVO₄) to understand chemical and physical properties of the photocatalysts, and to improve the photoactivity for water oxidation. Scanning electrochemical microscopy (SECM) was used to screen various dopants for BiVO₄, to calculate the photoconversion efficiencies to chemical energy at BiVO₄ electrodes, and to study the water oxidation intermediate radicals at the surface of BiVO₄. Tungsten and molybdenum doped BiVO₄ (W/Mo-BiVO₄) shows a photocurrent for water oxidation that is more than 10 times higher than undoped BiVO₄. Photoelectrochemical measurements and material analysis were done to discuss the factors that affect performance of BiVO₄. Finite elements analysis was also performed to explain the electron-hole transport and electrochemical reactions at W/Mo-BiVO₄ electrodes in solutions. Addition of conductive or electron accepting materials, e.g. reduced graphene oxide, into BiVO₄ was tried to study the electron-hole transport phenomena in the metal oxide electrodes. Surface adsorbed radicals produced during the water oxidation at W/Mo-BiVO₄ were interrogated by using SECM that the surface coverage and decay kinetics of adsorbed hydroxyl radicals at W/Mo-BiVO₄ were measured. The quantum efficiencies of the injected photon conversion to chemical energy were obtained from the photoelectrochemical measurements by using SECM. SECM techniques and finite elements analysis were also used to measure the faradaic efficiency of water oxidation at W/Mo-BiVO₄ under irradiation. Finally, unbiased water splitting to generate hydrogen and oxygen from water splitting only using photon energy at W/Mo-BiVO₄ electrodes was demonstrated in a dual n-type semiconductor or Z-scheme device. / text
|
438 |
Time-resolved spectroscopic studies of selected photoremovable protecting groupsAn, Huiying, 安慧颖 January 2010 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
439 |
Effects of copper-ligand and copper-copper interactions on excited state properties of luminescent copper (I) complexes: structural and photophysical studiesMao, Zhong., 毛中. January 2003 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
440 |
Design and synthesis of functionalized alkynylplatinum (II) polypyridyl complexes and oligothienylenevinylene derivatives : from dye-sensitized solar cells to bilayer heterojunction photovoltaicsKwok, Chi-ho, 郭志豪 January 2012 (has links)
A series of alkynylplatinum(II) polypyridine complexes with
4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine and 4,4′-dicarboxy-2,2′-bipyridine as TiO2
anchoring functionalities, has been successfully synthesized. Their photophysical,
electrochemical and luminescence properties have been extensively studied. The
excited state properties were probed using nanosecond transient absorption
spectroscopy. [Pt(tctpy)(C≡C-Th-BTD-Th)][NnBu4]2 displayed a long-lived transient
signal which was tentatively assigned to result from the formation of a
charge-separated state, which could be alternatively described as a
[Pt(tctpy)???(C≡C-Th-BTD-Th)+?] state, with the charge recombination rate constant
determined to be 2.9 × 105 s?1. The excited state redox potentials for the oxidation
process were determined and the data confirmed the ability of the complexes to inject
an electron into the conduction band of TiO2. The majority of the complexes were
found to sensitize the nanocrystalline TiO2 and exhibit photovoltaic properties, which
have been characterized by current-voltage measurements under illumination of air
mass (AM) 1.5G sunlight (100 mW cm–2).
A new class of molecular dyads comprising metalloporphyrin-linked
alkynylplatinum(II) polypyridine complexes was synthesized and characterized. Their
photophysical, electrochemical and luminescence properties have been studied in
detail. The excited state properties were probed using nanosecond transient absorption
spectroscopy which indicated the formation of a charge-separated state involving the
porphyrin radical anion, [Por??-(C≡C)Pt+?]. The excited state redox potentials for the
oxidation process were also determined with the data supporting the capability of the
complexes to inject an electron into the conduction band of TiO2. The majority of the
complexes were found to sensitize the nanocrystalline TiO2 and exhibit photovoltaic
properties, as characterized by current-voltage measurements under illumination of air
mass (AM) 1.5G sunlight (100 mW cm–2).
A series of organic materials consisting of a triphenylamine-based donor with
oligothiophene or oligothienylenevinylene based-conjugated linker and dicyanovinyl,
tricyanovinyl or cyanacrylic acid groups as acceptor, was synthesized and
characterized. Their photophysical, electrochemical, thermal and luminescence
properties were studied. Transient absorption spectra of TPA-OTV-DCN in
dichloromethane solution on the pico- to nanosecond timescale were recorded after
femtosecond laser excitation at 400 nm. A transient signal at ca. 700 nm was
tentatively assigned to result from the formation of a charge-separated
[(TPA-OTV)+??DCN??] state with the charge recombination rate constant determined
to be 5.3 × 109 s?1. The energy levels of the LUMOs of TPA-OTV1-DCN,
TPA-OTV2-DCN, TPA-OTV3-DCN TPA-TAZ1-DCN, TPA-TAZ2-DCN and
TPA-o-4Th-DCN were calculated to be of ca. ?3.9 eV, establishing the formation of a
downhill driving force for the energetically favorable electron transfer process
involving the injection of an electron into the LUMO of the C60 acceptor. The
majority of the compounds were found to exhibit photovoltaic properties. The
photovoltaic responses were characterized by current-voltage measurements under
illumination of air mass (AM) 1.5G sunlight (100 mW cm–2). / published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
Page generated in 0.0832 seconds