• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 670
  • 98
  • 66
  • 56
  • 13
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 3
  • Tagged with
  • 1153
  • 382
  • 191
  • 165
  • 118
  • 97
  • 89
  • 89
  • 65
  • 58
  • 57
  • 53
  • 50
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Integrated treatment of pentachlorophenol by adsorption using magnetite-immobilized chitin and photocatalytic oxidation. / CUHK electronic theses & dissertations collection

January 2007 (has links)
Chitin is known as an effective biosorbent, which is used to preconcentrate PCP for further treatment. In order to reuse and recover the biosorbent, magnetic separation is a cost-effective alternative to separate the PCP-adsorbed biosorbent (i.e. chitin) from the treated water. Therefore, chitin is immobilized by magnetite prior PCP adsorption. From the immobilization results, the solution pH, temperature, agitation rate do not show great effect on the immobilization of chitin and magnetite. Second, magnetite-immobilized chitin can be formed as quickly as 5 min. Moreover, the interaction of chitin and magnetite is very strong since it is not easy to separate by vigorous shaking, high temperature and changing pH. Although the underlying mechanism of magnetite and chitin is still obscure, the biosorbent is proved to have high stability and reusability. In addition, both Langmuir and Freundlich models indicate that immobilization of chitin by magnetite is favorable with the Langmuir model being the major one. / For PCP adsorption study, it is found that magnetite-immobilized chitin can retain the PCP adsorption ability as free chitin. In accordance with the results, the PCP adsorption of magnetite-immobilized chitin is influenced by altering the parameters of biosorbent concentration, solution pH, temperature, agitation rate, contact time and initial PCP concentration. In general, higher amount of biosorbent gives higher removal efficiency (RE) but lower removal capacity (RC) as more binding sites are available for PCP. The PCP removal is enhanced by lowering pH since uncharged PCP is favorable for adsorption. It is speculated that hydrophobic interaction, hydrogen bonding and electrostatic interaction are involved. In addition, the biosorption efficiency is impeded by high temperature. Evidence shows that the adsorption might be due to the exothermic force such as hydrogen bonding. The biosorption is described as biphasic mechanism with the fast initial phase followed by slow equilibrium phase. For the PCP (10 mg/L) adsorption, the optimized conditions are: 1,500 mg/L of magnetite-immobilized chitin, initial pH 6, 25°C, 200 rpm and 60 min. The RE is 57.9% and RC is 5.4 mg/g. However, the increase in the amount of immobilized chitin (24,000 mg/L) can increase the RE up to 98%. By considering the Langmuir and Freundlich isotherms, the adsorption might be heterogenous, as the correlation coefficient from Freundlich model is higher. / Pentachlorophenol (PCP), a highly chlorinated aromatic organic compound, was widely used as a biocide and is now restrictly used as a wood preservative. PCP is toxic and ubiquitous environmental pollutant. In the present study, integrated treatment of biosorption and photocatalytic oxidation (PCO) using magnetite-immobilized chitin is employed to completely degrade PCP. / To thoroughly remove PCP, PCO is also employed after the biosorption. One hundred % of PCP removal is achieved after 5 h irradiation time, in 100 mL solution at initial pH 9 with 20 mM of H2O2 and 200 mg/L of TiO2. The intermediates of PCP are identified as 2,3,5,6-tetrachlorohydroquinone (TeHQ) and 2,3,5,6-tetrachlorophenol (TeCP) by GC/MS analysis. In addition, the toxicity of sample is monitored by the solid-phase and aqueous-phase Microtox RTM tests, which the toxicity increases and then decreases along the irradiation time. The biosorbent shows no great changes on chitin content and functional groups after PCO. In addition, the results imply that magnetite-immobilized chitin has a good potential to be reused at least for four cycles with high RE and DE. Therefore, the combination of biosorption and PCO treatment was feasible for PCP removal and the system is economic and convenient for repeated use. / by Pang, King Man. / "Oct 2007." / Source: Dissertation Abstracts International, Volume: 69-08, Section: B, page: 4636. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 186-212). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
412

Photocatalytic oxidation of pentachlorophenol =: 五氯酚的光催化氧化作用. / 五氯酚的光催化氧化作用 / Photocatalytic oxidation of pentachlorophenol =: Wu lu fen de guang cui hua yang hua zuo yong. / Wu lu fen de guang cui hua yang hua zuo yong

January 2001 (has links)
by Fong Wai-lan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 138-152). / Text in English; abstracts in English and Chinese. / by Fong Wai-lan. / Acknowledgements --- p.i / Abstracts --- p.ii / Contents --- p.vi / List of figures --- p.xii / List of Plates --- p.xviii / List of tables --- p.xix / Abbreviations --- p.xxi / Chemical equations --- p.xxiii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Pentachlorophenol --- p.1 / Chapter 1.1.1 --- Characteristics of pentachlorophenol --- p.1 / Chapter 1.1.2 --- Use of pentachlorophenol --- p.4 / Chapter 1.1.3 --- Annual consumption and regulations for the use of pentachlorophenol --- p.4 / Chapter 1.1.4 --- Pentachlorophenol in the environment --- p.4 / Chapter 1.1.5 --- Toxicity of pentachlorophenol --- p.5 / Chapter I. --- Mechanism --- p.5 / Chapter II. --- Toxicity towards plant and animals --- p.7 / Chapter III. --- Toxicity towards human --- p.7 / Chapter 1.2 --- Treatments of pollutant --- p.9 / Chapter 1.2.1 --- Physical treatment --- p.9 / Chapter 1.2.2 --- Chemical treatment --- p.9 / Chapter 1.2.3 --- Biological treatment --- p.12 / Chapter 1.2.4 --- Advanced Oxidation Processes (AOPs) --- p.14 / Chapter Chapter 2 --- Objectives --- p.28 / Chapter 3 --- Materials and methods --- p.29 / Chapter 3.1 --- Chemical reagents --- p.29 / Chapter 3.2 --- Photocatalytic reactor --- p.29 / Chapter 3.3 --- Determination of pentachlorophenol concentration --- p.31 / Chapter 3.4 --- Optimization of reaction conditions for UV-PCO --- p.34 / Chapter 3.4.1 --- Batch system --- p.34 / Chapter 3.4.1.1 --- Effect of initial hydrogen peroxide concentration --- p.34 / Chapter 3.4.1.2 --- "Effect of initial titanium dioxide concentration, light intensity and initial pH" --- p.34 / Chapter 3.4.1.3 --- Effect of initial pentachlorophenol concentration and irradiation time & determination of total organic carbon (TOC) removal during UV-PCO --- p.36 / Chapter 3.4.2 --- Continuous system --- p.36 / Chapter 3.5 --- Optimization of reaction conditions for VL-PCO --- p.38 / Chapter 3.5.1 --- "Effect of VL source, initial hydrogen peroxide, titanium dioxide concentration,light intensity, pH and reaction volume" --- p.38 / Chapter 3.5.2 --- Effect of initial pentachlorophenol concentration and irradiation time & determination of total organic carbon (TOC) removal during VL-PCO --- p.39 / Chapter 3.6 --- Optimization of reaction conditions for S-PCO --- p.39 / Chapter 3.6.1 --- "Effect of initial hydrogen peroxide, titanium dioxide concentration,light intensity and pH" --- p.39 / Chapter 3.6.2 --- Effect of irradiation time & determination of total organic carbon (TOC) removal during S-PCO --- p.41 / Chapter 3.7 --- Modification of photocatalytic oxidation --- p.41 / Chapter 3.7.1 --- Buffering system --- p.41 / Chapter 3.7.2 --- Immobilized titanium dioxide system --- p.41 / Chapter 3.7.2.1 --- Preparation of titanium dioxide coated spiral column --- p.41 / Chapter 3.7.2.2 --- Effect of flow rate for the UV-PCO (continuos- buffering/immobilized titanium dioxide) system --- p.43 / Chapter 3.8 --- Estimation of pentachlorophenol degradation pathway by photocatalytic oxidation --- p.43 / Chapter 3.9 --- Evaluation for the toxicity change of pentachlorophenol during the degradation process --- p.43 / Chapter 3.9.1 --- Microtox® test --- p.43 / Chapter 3.9.2 --- Amphipod survival test --- p.45 / Chapter Chapter 4 --- Results --- p.47 / Chapter 4.1 --- Determination of pentachlorophenol concentration --- p.47 / Chapter 4.2 --- Optimization of reaction conditions for UV-PCO --- p.47 / Chapter 4.2.1 --- Batch system --- p.47 / Chapter 4.2.1.1 --- Effect of initial hydrogen peroxide concentration --- p.47 / Chapter 4.2.1.2 --- Effect of initial titanium dioxide concentration --- p.54 / Chapter 4.2.1.3 --- Effect of light intensity --- p.54 / Chapter 4.2.1.4 --- Effect of initial pH --- p.54 / Chapter 4.2.1.5 --- Effect of initial pentachlorophenol concentration and irradiation time & determination of total organic carbon (TOC) removal during UV-PCO --- p.61 / Chapter 4.2.2 --- Continuous system --- p.61 / Chapter 4.3 --- Optimization of reaction conditions for VL-PCO --- p.69 / Chapter 4.3.1 --- Effect of VL source --- p.69 / Chapter 4.3.2 --- Effect of initial hydrogen peroxide concentration --- p.69 / Chapter 4.3.3 --- Effect of initial titanium dioxide concentration --- p.69 / Chapter 4.3.4 --- Effect of light intensity --- p.76 / Chapter 4.3.5 --- Effect of initial pH --- p.76 / Chapter 4.3.6 --- Effect of reaction volume --- p.76 / Chapter 4.3.7 --- Effect of initial pentachlorophenol concentration and irradiation time & determination of total organic carbon (TOC) removal during VL-PCO --- p.83 / Chapter 4.4 --- Optimization of reaction conditions for S-PCO --- p.83 / Chapter 4.4.1 --- Effect of initial hydrogen peroxide concentration --- p.83 / Chapter 4.4.2 --- Effect of initial titanium dioxide concentration --- p.90 / Chapter 4.4.3 --- Effect of initial pH --- p.90 / Chapter 4.4.4 --- Effect of irradiation time & determination of total organic carbon (TOC) removal during S-PCO --- p.90 / Chapter 4.5 --- Modification of photocatalytic oxidation --- p.96 / Chapter 4.5.1 --- Buffering system --- p.96 / Chapter 4.5.2 --- Immobilized titanium dioxide system --- p.104 / Chapter 4.6 --- Estimation of pentachlorophenol degradation pathway by photocatalytic oxidation --- p.104 / Chapter 4.7 --- Evaluation of the toxicity change of pentachlorophenol during photocatalytic oxidation --- p.104 / Chapter 4.7.1 --- Microtox® test --- p.104 / Chapter 4.7.2 --- Amphipod survival test --- p.112 / Chapter Chapter 5 --- Discussion --- p.116 / Chapter 5.1 --- Determination of pentachlorophenol concentration --- p.116 / Chapter 5.2 --- Optimization of reaction conditions for UV-PCO --- p.116 / Chapter 5.2.1 --- Batch system --- p.116 / Chapter 5.2.1.1 --- Effect of initial hydrogen peroxide concentration --- p.116 / Chapter 5.2.1.2 --- Effect of initial titanium dioxide concentration --- p.117 / Chapter 5.2.1.3 --- Effect of light intensity --- p.119 / Chapter 5.2.1.4 --- Effect of initial pH --- p.119 / Chapter 5.2.1.5 --- Effect of initial pentachlorophenol concentration and irradiation time & determination of total organic carbon (TOC) removal during UV-PCO --- p.120 / Chapter 5.2.2 --- Continuous system --- p.120 / Chapter 5.3 --- Optimization of reaction conditions for VL-PCO --- p.121 / Chapter 5.3.1 --- Effect of visible light (VL) source --- p.121 / Chapter 5.3.2 --- Effect of initial hydrogen peroxide concentration --- p.121 / Chapter 5.3.3 --- Effect of initial titanium dioxide concentration --- p.122 / Chapter 5.3.4 --- Effect of light intensity --- p.123 / Chapter 5.3.5 --- Effect of initial pH --- p.124 / Chapter 5.3.6 --- Effect of reaction volume --- p.124 / Chapter 5.3.7 --- Effect of initial pentachlorophenol concentration and irradiation time & determination of total organic carbon (TOC) removal during VL-PCO --- p.124 / Chapter 5.4 --- Optimization of reaction conditions for S-PCO --- p.125 / Chapter 5.4.1 --- Effect of initial hydrogen peroxide concentration --- p.125 / Chapter 5.4.2 --- Effect of initial titanium dioxide concentration --- p.126 / Chapter 5.4.3 --- Effect of initial pH --- p.127 / Chapter 5.4.4 --- Effect of irradiation time & determination of total organic carbon (TOC) removal during S-PCO --- p.127 / Chapter 5.5 --- Modification of photocatalytic oxidation --- p.128 / Chapter 5.5.1 --- Buffering system --- p.128 / Chapter 5.5.2 --- Effect of flow rate on removal efficiency for the UV-PCO (continuos-buffering/immobilized titanium dioxide) system --- p.129 / Chapter 5.6 --- Estimation of pentachlorophenol degradation pathway by photocatalytic oxidation --- p.130 / Chapter 5.7 --- Evaluation for the toxicity change of pentachlorophenol during photocatalytic oxidation --- p.132 / Chapter 5.7.1 --- Microtox® test --- p.132 / Chapter 5.7.2 --- Amphipod survival test --- p.133 / Chapter Chapter 6 --- Conclusions --- p.135 / Chapter Chapter 7 --- References --- p.138 / Appendix i --- p.153 / Appendix ii --- p.154 / Appendix iii --- p.154
413

Synthesis and photophysical properties of phthalocyanine-containing poly(norbornenes).

January 2002 (has links)
by Man-Wai Woo. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 77-81). / Abstracts in English and Chinese. / ABSTRACT --- p.i / ACKNOWLEDGMENT --- p.iii / CONTENTS --- p.iv / LIST OF FIGURES --- p.vi / LIST OF TABLES --- p.ix / ABBREVIATIONS --- p.x / Chapter 1. --- INTRODUCTION / Chapter 1.1 --- General Background of Phthalocyanines --- p.1 / Chapter 1.2 --- Previous Examples of Phthalocyanine-containing Polymers --- p.5 / Chapter 1.2.1 --- Poly(phthalocyanines) Linked Via Peripheral Substituents --- p.5 / Chapter 1.2.2 --- Poly(phthalocyanines) Linked Via Axial Ligation --- p.7 / Chapter 1.2.3 --- Poly(phthalocyanines) Attached Laterally to a Polymer Backbone --- p.11 / Chapter 1.3 --- Ring Opening Metathesis Polymerization (ROMP) --- p.15 / Chapter 1.4 --- ROMP of Norbornene Substituted Porphyrazine --- p.18 / Chapter 2. --- RESULTS AND DISCUSSION / Chapter 2.1 --- Phthalocyanines Substituted with Four Poly(norbornene)s --- p.20 / Chapter 2.1.1 --- Preparation of Tetra(norbornene) Phthalocyanines --- p.20 / Chapter 2.1.2 --- Polymerization of Tetra(norbornene) Phthalocyanines --- p.30 / Chapter 2.1.3 --- Characterization of Polymers --- p.39 / Chapter 2.1.4 --- Photophysical Properties of the Polymers --- p.43 / Chapter 2.2 --- Phthalocyanines Substituted with One Poly(norbornene) --- p.49 / Chapter 2.2.1 --- Preparation and Polymerization of Mono(norbornene) Phthalocyanines --- p.49 / Chapter 2.2.2 --- Characterization of the Polymers 41 - 44 --- p.56 / Chapter 2.2.3 --- Fluorescence Quenching of 40 Polymers 41 -44 --- p.61 / Chapter 2.2.4 --- Preparation of Water-soluble Poly(7-oxanorbornene) --- p.63 / Chapter 2.3 --- Conclusion --- p.65 / Chapter 3 --- EXPERIMENTAL SECTION --- p.66 / Chapter 3.1 --- General Methods --- p.66 / Chapter 3.2 --- Photophysical Measurements --- p.67 / Chapter 3.3 --- Synthesis of Phthalocyanines with Four Poly(norbornene) Substituents --- p.68 / Chapter 3.4 --- Synthesis of Phthalocyanines with One Poly(norbornene) Substituent --- p.74 / Chapter 4. --- REFERENCES --- p.77
414

Photocatalytic oxidation (PCO) of 2,2',3,3'-tetrachlorobiphenyl =: 2,2',3,3'-四氯聯苯的光催化氧化作用. / 2,2',3,3'-四氯聯苯的光催化氧化作用 / Photocatalytic oxidation (PCO) of 2,2',3,3'-tetrachlorobiphenyl =: 2,2',3,3'-si lu lian ben de guang cui hua yang hua zuo yong. / 2,2',3,3'-si lu lian ben de guang cui hua yang hua zuo yong

January 2002 (has links)
by Wong Kin-hang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 99-127). / Text in English; abstracts in English and Chinese. / by Wong Kin-hang. / Acknowledgements --- p.i / Abstracts --- p.ii / Contents --- p.vi / List of Figures --- p.ix / List of Tables --- p.x / Abbreviations --- p.xi / Chemical Equations --- p.xii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Poly chlorinated biphenyls --- p.1 / Chapter 1.1.1 --- Characteristics of polychlorinated biphenyls (PCBs) --- p.1 / Chapter 1.1.2 --- Use of polychlorinated biphenyls --- p.3 / Chapter 1.1.3 --- World-wide production of polychlorinated biphenyls --- p.7 / Chapter 1.1.4 --- Polychlorinated biphenyls in the environment --- p.8 / Chapter 1.1.5 --- Toxicity of polychlorinated biphenyls --- p.12 / Chapter I. --- Mechanism --- p.12 / Chapter II. --- Toxicity towards plant and animals --- p.13 / Chapter III. --- Toxicity towards human --- p.14 / Chapter IV. --- Enzymatic induction by PCBs --- p.14 / Chapter V. --- Carcinogenicity of PCBs --- p.18 / Chapter 1.2 --- Treatments of pollutant --- p.19 / Chapter 1.2.1 --- Physical treatment --- p.19 / Chapter 1.2.2 --- Chemical treatment --- p.20 / Chapter 1.2.3 --- Biological treatment --- p.22 / Chapter 1.2.4 --- Photocatalytic oxidation (PCO) --- p.25 / Chapter Chapter 2 --- Objectives --- p.35 / Chapter Chapter 3 --- Materials and methods --- p.36 / Chapter 3.1 --- Chemical reagents --- p.36 / Chapter 3.2 --- Photocatalytic oxidation reactor --- p.36 / Chapter 3.3 --- Separation and determination of eight PCB congeners --- p.39 / Chapter 3.4 --- Determination of tetra-CB concentration --- p.40 / Chapter 3.5 --- Determination of PCO intermediates and products --- p.41 / Chapter 3.6 --- Optimisation of reaction conditions for UV-PCO in batch system --- p.44 / Chapter 3.6.1 --- Control experiments and effect of initial titanium dioxide concentration --- p.44 / Chapter 3.6.2 --- Effect of initial hydrogen dioxide concentration and UV intensity --- p.44 / Chapter 3.6.3 --- Effect of initial titanium dioxide concentration and initial pH --- p.45 / Chapter 3.7 --- Estimation of tetra-CB degradation pathway by photocatalytic oxidation --- p.45 / Chapter 3.8 --- Evaluation for the toxicity of hydrogen peroxide and toxicity change of tetra-CB during PCO by Microtox® test --- p.45 / Chapter 3.9 --- Determination of H202 concentration after PCO --- p.47 / Chapter Chapter 4 --- Results --- p.50 / Chapter 4.1 --- Separation and determination of eight PCB congeners --- p.50 / Chapter 4.2 --- Photocatalytic oxidation of mono-CB --- p.50 / Chapter 4.3 --- Determination of tetra-CB --- p.55 / Chapter 4.4 --- Optimisation of reaction conditions for UV-PCO in batch system --- p.56 / Chapter 4.4.1 --- Control experiments and effects of initial titanium dioxide concentration --- p.56 / Chapter 4.4.2 --- Effect of initial hydrogen peroxide concentration and UV intensity --- p.56 / Chapter 4.4.3 --- Effect of initial titanium dioxide concentration and initial pH --- p.60 / Chapter 4.5 --- Estimation of tetra-CB degradation pathway by photocatalytic oxidation --- p.71 / Chapter 4.6 --- Evaluation for the toxicity of hydrogen peroxide and toxicity change of tetra-CB by Microtox® test --- p.72 / Chapter 4.7 --- Determination of H202 concentration after PCO --- p.72 / Chapter Chapter 5 --- Discussion --- p.89 / Chapter 5.1 --- Separation and determination of eight PCB congeners --- p.89 / Chapter 5.2 --- Photocatalytic oxidation of mono-CB --- p.89 / Chapter 5.3 --- Determination of tetra-CB --- p.90 / Chapter 5.4 --- Optimisation of reaction conditions for UV-PCO in batch system --- p.90 / Chapter 5.4.1 --- Control experiments and effects of initial titanium dioxide concentration --- p.91 / Chapter 5.4.2 --- Effect of initial hydrogen peroxide concentration and UV intensity --- p.91 / Chapter 5.4.3 --- Effect of initial titanium dioxide concentration and initial pH --- p.93 / Chapter 5.5 --- Estimation of tetra-CB degradation pathway by photocatalytic oxidation --- p.95 / Chapter 5.6 --- Evaluation for the toxicity of hydrogen peroxide and toxicity change of tetra-CB by Microtox® test --- p.96 / Chapter 5.7 --- Determination of H202 concentration after PCO --- p.97 / Chapter Chapter 6 --- Conclusions --- p.98 / Chapter Chapter 7 --- References --- p.99
415

Visible-light-driven photocatalysts for bacterial disinfection: bactericidal performances and mechanisms. / CUHK electronic theses & dissertations collection

January 2012 (has links)
在過去的幾十年中,人們越來越關心由致病微生物引起的水傳播疾病的爆發。作為一種綠色技術,太陽能光催化在不引起二次污染的殺滅各種致病微生物方面引起了廣泛關注。但是,目前最廣泛應用的TiO₂光催化劑僅在紫外光激發範圍內有效,而紫外光僅占太陽光譜的4%。因為太陽光譜中有45%是可見光,所以新型可見光催化劑的開發是現今光催化技術亟待解決的問題。另一方面,目前對於光催化殺菌機理的研究報導非常稀少而且主要集中于紫外-TiO₂光催化系統中,而對於可見光催化系統中的殺菌機理研究還鮮有報導。 / 本研究介紹三種新型可見光催化劑的殺菌性能。它們是B,Ni共摻TiO₂微米球(BNT),BiVO₄納米管(BV-NT)和CdIn₂S₄微米球(CIS)。其中一種是修飾的TiO₂催化劑,另兩種是新型的非TiO₂基催化劑。採用加入各種湮滅劑結合一種分離裝置的研究方法系統研究了三種催化劑的可見光殺菌機理。首先,研究發現當用BNT作為光催化劑的時候,可見光催化降解染料和殺菌之間存在巨大的差異。對於光催化降解染料,光催化反應主要發生在催化劑的表面,是由表面活性物質如h⁺, ・OHs和・O₂⁻參與,而細菌可以被擴散物種如・OH[subscript b]和H₂O₂,以不直接接觸催化劑表面的方式被殺死。可擴散的H₂O₂在這種殺菌過程中起了最重要的作用,而它可以在催化劑價帶以・OH[subscript b]溶液體相耦合和・OH[subscript s]催化劑表面耦合兩種方式產生。 / 其次,在用BV-NT作為光催化劑可見光殺滅大腸桿菌的過程中,光生空穴(h⁺)以及由空穴產生的氧化物種,如・OH[subscript s], H₂O₂和・HO₂/・O₂⁻,是主要的活性物種。但是這個殺菌過程只有很少量的H₂O₂可以擴散到溶液中,導致有效殺菌需要細菌和光催化表面直接接觸。研究還發現,細菌本身可以捕獲光生電子(e⁻)來降低空穴-電子複合率,這個作用在無氧氣參與的殺菌過程中尤為明顯。透射電鏡顯示,細菌的破壞是由細胞壁開始從外到內的被破壞。研究認為,表面羥基・OH[subscript s]比溶液體相羥基・OH[subscript b]更加重要,並且很難從BV-NT表面擴散進容易中。 / 最後,研究還發現CIS也具有不接觸細菌而有效可見光催化殺滅大腸桿菌的能力,這也歸結為可擴散H₂O₂,而不是・OH的作用。H₂O₂可以通過・O₂⁻從催化劑導帶和價帶同時產生。本研究提供了幾種具有應用前景的高效可見光催化殺菌催化劑,並對其光催化機理提出了新的思路,指出可見光催化殺菌機理與使用的光催化劑是密切相關的。更重要的是,本研究建立了一種簡便易行的研究方法,可用於對其他各種可見光催化殺菌系統進行深入的機理研究。 / During the last few decades, there has been an increasing public concern related to the outbreak of waterborne diseases caused by pathogenic microorganisms. As a green technology, solar photocatalysis has attracted much attention for the disinfection of various microorganisms without secondary pollution. However, the most commonly used TiO₂ photocatalyst is only active under UV irradiation which accounts for only 4% of the solar spectrum. Therefore, new types of photocatalysts that can be excited by visible light (VL) are highly needed, as 45% of the solar spectrum is covered by VL. In addition, existing reports on the mechanisms of photocatalytic bacterial disinfection are rather limited and mostly based on TiO₂-UV irradiated systems, thus the mechanisms in visible-light-driven (VLD) photocatalystic disinfection systems are far from fully understandable. / In this study, three different kinds of VLD photocatalysts were discovered for the photocatalytic bacterial disinfection. They were B-Ni-codoped TiO₂ microsphere (BNT), bismuth vanadate nanotube (BV-NT), and cadmium indium sulfide (CIS). One was modified TiO₂-based photocatalyst, and the other two were new types of non-TiO₂ based photocatalyst. The mechanisms of VLD photocatalytic disinfection were investigated by multiple scavenging studies combined with a partition system. Firstly, significant differences between VLD photocatalytic dye decolorization and bacterial disinfection were found in the case of BNT as the photocatalyst. For photocatalytic dye decolorization, the reaction mainly occurred on the photocatalyst surface with the aid of surface-bounded reactive species (h⁺, ・OH[subscript s] and ・O₂⁻), while bacterial cell could be inactivated by diffusing reactive oxidative species such as ・OH[subscript b] and H₂O₂ without the direct contact with the photocatalyst. The diffusing H₂O₂ played the most important role in the photocatalytic disinfection, which could be produced both by the coupling of ・OH[subscript b] in bulk solution and ・OH[subscript s] on the surface of photocatalyst at the valence band. / Secondly, when using BV-NT as the photocatalyst for Escherichia coli K-12 inactivation, the photogenerated h⁺ and reactive oxidative species derived from h⁺, such as ・OH[subscript s], H₂O₂ and ・HO₂/・O₂⁻, were the major reactive species. However, the inactivation requires close contact between the BV-NT and bacterial cells, as only a limited amount of H₂O₂ can diffuse into the solution to cause the inactivation. The bacterial cells can trap e⁻ in order to minimize e⁻-h⁺ recombination, especially under anaerobic condition. Transmission electron microscopic study indicated the destruction process of bacterial cell began from the cell wall to other cellular components. The ・OH[subscript s] was postulated to be more important than ・OH[subscript b] and was not supposed to be released very easily from BV-NT surface. / Finally, it was found that E. coli cells could be effectively inactivated without the direct contact with CIS, which was attributed to the function of diffusing H₂O₂ rather than ・OH. H₂O₂ was produced from both conduction and valance bands with the involvement of ・O₂⁻, which were detected by ESR spin-trap with DMPO trapping technology. While this study provided promising candidates of efficient VLD photocatalysts for water disinfection as well as deep insights into the disinfection mechanisms, it was notable that the photocatalytic disinfection mechanisms were quite dependent on the selected photocatalysts. Nevertheless, the research methodology established in this study was proved to be facile and versatile for the in-depth investigation of mechanisms in different VLD photocatalyst systems. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Wang, Wanjun. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 140-170). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Acknowledgements --- p.i / Abstract --- p.vi / List of Figures --- p.xvi / List of Plates --- p.xxiii / List of Tables --- p.xxiv / List of Equations --- p.xxv / Abbreviations --- p.xxvii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Water disinfection --- p.1 / Chapter 1.2 --- Traditional water disinfection methods --- p.2 / Chapter 1.2.1 --- Chlorination --- p.2 / Chapter 1.2.2 --- Ozonation --- p.3 / Chapter 1.2.3 --- UV irradiation --- p.4 / Chapter 1.3 --- Advanced oxidation process --- p.5 / Chapter 1.4 --- Photocatalysis --- p.6 / Chapter 1.4.1 --- Fundamental mechanism for TiO₂ photocatalysis --- p.7 / Chapter 1.4.2 --- Photocatalytic water disinfection --- p.12 / Chapter 1.5 --- Visible-light-driven photocatalysts for water disinfection --- p.16 / Chapter 1.5.1 --- Modified TiO₂ photocatalysts --- p.16 / Chapter 1.5.1.1 --- Surface modication of TiO₂ by noble metals --- p.16 / Chapter 1.5.1.2 --- Ion doped TiO₂ --- p.18 / Chapter 1.5.1.3 --- Dye-sensitized TiO₂ --- p.19 / Chapter 1.5.1.4 --- Composite TiO₂ --- p.20 / Chapter 1.5.2 --- Non-TiO₂ based photocatalysts --- p.22 / Chapter 1.5.2.1 --- Metal oxides --- p.22 / Chapter 1.5.2.2 --- Metal sulfides --- p.24 / Chapter 1.5.2.3 --- Bismuth metallates --- p.25 / Chapter 1.6 --- Photocatalystic disinfection mechanisms --- p.27 / Chapter 2 --- Objectives --- p.30 / Chapter 3 --- Comparative Study of Visible-light-driven Photocatalytic Mechanisms of Dye Decolorization and Bacterial Disinfection by B-Ni-codoped TiO₂ Microspheres --- p.32 / Chapter 3.1 --- Introduction --- p.32 / Chapter 3.2 --- Experimental --- p.35 / Chapter 3.2.1 --- Materials --- p.35 / Chapter 3.2.2 --- Characterizations --- p.36 / Chapter 3.2.3 --- Photocatalytic decolorization of RhB --- p.36 / Chapter 3.2.4 --- Photocatalytic disinfection of E. coli K-12 --- p.37 / Chapter 3.2.5 --- Partition system --- p.40 / Chapter 3.2.6 --- Scavenging study --- p.41 / Chapter 3.2.7 --- Analysis of ・OH and ・O₂⁻ --- p.42 / Chapter 3.2.8 --- Analysis of H₂O₂ --- p.43 / Chapter 3.3 --- Results and Discussion --- p.44 / Chapter 3.3.1 --- XRD and SEM images --- p.44 / Chapter 3.3.2 --- Photocatalytic decolorization of RhB --- p.46 / Chapter 3.3.2.1 --- Role of reactive species --- p.46 / Chapter 3.3.2.2 --- Partition system for dye decolorization --- p.49 / Chapter 3.3.3 --- Photocatalytic bacterial disinfection --- p.51 / Chapter 3.3.3.1 --- Role of reactive species --- p.51 / Chapter 3.3.3.2 --- Partition system for bacterial disinfection --- p.54 / Chapter 3.3.3.3 --- pH effects --- p.58 / Chapter 3.3.3.4 --- Role of H₂O₂ --- p.60 / Chapter 3.3.4 --- Role of ・O₂⁻ in RhB decolorization and bacterial disinfection --- p.67 / Chapter 3.4 --- Conclusions --- p.75 / Chapter 4. --- Visible-light-driven Photocatalytic Inactivation of E. coli K-12 by Bismuth Vanadate Nanotubes: Bactericidal Performance and Mechanism --- p.76 / Chapter 4.1 --- Introduction --- p.76 / Chapter 4.2 --- Experimental --- p.78 / Chapter 4.2.1 --- Materials --- p.78 / Chapter 4.2.2 --- Photocatalytic bacterial inactivation --- p.80 / Chapter 4.2.3 --- Bacterial regrowth ability test --- p.82 / Chapter 4.2.4 --- Analysis of reactive species --- p.82 / Chapter 4.2.5 --- Preparation procedure for bacterial TEM study --- p.83 / Chapter 4.2.6 --- Analysis of bacterial catalase activity --- p.84 / Chapter 4.2.7 --- Analysis of potassium ion leakage --- p.84 / Chapter 4.3 --- Results and Discussion --- p.85 / Chapter 4.3.1 --- Photocatalytic bacterial inactivation --- p.85 / Chapter 4.3.2 --- Mechanism of photocatalytic inactivation --- p.87 / Chapter 4.3.2.1 --- Role of primary reactive species --- p.87 / Chapter 4.3.2.2 --- Role of direct contact effect --- p.96 / Chapter 4.3.3 --- Destruction model of bacterial cells --- p.98 / Chapter 4.3.4 --- Analysis of radical production --- p.104 / Chapter 4.4 --- Conclusions --- p.109 / Chapter 5 --- CdIn₂S₄ Microsphere as an Efficient Visible-light-driven Photocatalyst for Bacterial Inactivation: Synthesis, Characterizations and Photocatalytic Inactivation Mechanisms --- p.111 / Chapter 5.1 --- Introduction --- p.111 / Chapter 5.2 --- Experimental --- p.113 / Chapter 5.2.1 --- Synthesis --- p.113 / Chapter 5.2.2 --- Characterizations --- p.114 / Chapter 5.2.3 --- Photocatalytic bacterial inactivation --- p.116 / Chapter 5.3 --- Results and Discussion --- p.117 / Chapter 5.3.1 --- Characterizations of Photocatalyst --- p.117 / Chapter 5.3.2 --- Photocatalytic bacterial inactivation and mechanism --- p.121 / Chapter 5.3.3 --- Destruction process of bacterial cell --- p.128 / Chapter 5.3.4 --- Analysis of radical generation --- p.131 / Chapter 5.4 --- Conclusions --- p.133 / Chapter 6 --- General Conclusions --- p.135 / Chapter 7 --- References --- p.140
416

Synthesis and Photochemistry of Phenyl Subtituted-1,2,4-Thiadiazoles; 15N-Labeling Studies

Changtong, Chuchawin 05 May 2005 (has links)
Photochemistry studies of phenyl substituted-1,2,4-thiadiazoles have revealed that 5-phenyl-1,2,4-thiadiazoles 31, 90, 98, 54 and 47 undergo a variety of photochemical reactions including photofragmentation, phototransposition, and photo-ring expansion while irradiation of 3-phenyl-1,2,4-thiadiazoles 46, 105 and 106 leads mainly to the formation of photofragmentation products. The formation of the phototransposition products has been suggested to arise from a mechanism involving electrocyclic ring closure and sigmatropic sulfur migration via a bicyclic intermediate: phenyl-1,3-diaza-5-thiabicyclo[2.1.0]pentene (BC). 15N-Labeling experiments confirm that sulfur undergoes sigmatropic shifts around all four sides of the diazetine ring. Thus, irradiation of 31-4-15N or 54-4-15N leads to the formation of 31-2-15N or 54-2-15N and to an equimolar mixture of 46-2-15N and 46-4-15N or 57-2-15N and 57-4-15N. Work in this laboratory on 15N-labeling of 46-2-15N also shows that 46 does not undergo electrocyclic ring closure but reacts exclusively by photofragmentation of the thiadiazole ring. 15N-Scrambling in the photofragmentation products observed after irradiation of 31-4-15N or 54-4-15N is greater than 15N-scrambling in the starting thiadiazoles suggesting that these products cannot arise only from direct fragmentation of the thiadiazole rings. An additional pathway for the formation of these products is required. The formation of phenyltriazines, the photo-ring expansion products 39 and 40 or 65 and 66 from photolysis of 31 or 54 is proposed to arise via phenyldiazacyclobutadienes (CB), generated from elimination of atomic sulfur from the bicyclic intermediates. It is suggested that phenyldiazacyclobutadienes then undergo [4+2] cycloaddition self-coupling resulting in the formation of unstable tricyclic intermediates which finally cleave to give phenyltriazines and nitriles. The observed 15N distribution in the phenyltriazine photoproducts formed after photolysis of 31-4-15N or 54-4-15N and the formation triazine 72 after irradiation of a mixture of 31+54 are consistent with this mechanism. The formation of nitriles by this pathway would account for the additional 15N-scrambling in the photofragmentation products. The photochemically generated phenyl-1,3-diaza-5-thiabicyclo[2.1.0]pentenes are the key intermediates in this suggested mechanism. In the presence of furan, these intermediates are expected to be trapped as Diels-Alder adducts. Irradiation of phenylthiadiazoles 31, 54 and 47 in furan solvent lead to increased consumption of these thiadiazoles, to quenching of the known photoproducts, and to the formation of new products suggested to result from furan trapping of the thiadiazoles followed by elimination of sulfur. Irradiation of 46 in furan solvent leads only to the formation of the photofragmentation product; no furan trapping adduct is observed. This result is consistent with the 15N-labeling experiment indicating that 46 does not undergo electrocyclic ring closure after irradiation. The photoreactivity of these phenylthiadiazoles in acetonitrile is substantially decreased when the phenyl ring at position 4 is substituted with an electron donating or withdrawing group. However, they are more photoreactive in cyclohexane solvent than in acetonitrile. The fluorescence emission spectra of these (4¢-substituted)phenyl-1,2,4-thiadiazoles exhibit moderate - large Stokes' shifts in acetonitrile. The magnitudes of these Stokes' shifts decrease in cyclohexane. This suggests a charge transfer character associated with the excited states of these thiadiazoles. In acetonitrile, these charge transfer excited states would be stabilized and become the lowest energy excited state. These charge transfer excited states would not be photoreactive and, thus, fluorescence emission becomes an effective deactivation process. In cyclohexane solvent, the charge transfer excited states would be less stabilized and, thus, the relaxed S1 would, then, become the lowest excited state. The relaxed S1 would be the state from which the observed photoproducts originate and the observed fluorescence with the smaller Stokes' shifts compared with the Stokes' shifts observed in acetonitrile.
417

Singlet-Singlet and Triplet-Triplet Energy Transfer in Polychromophoric Peptides

Benco, John S 03 August 2000 (has links)
"The photophysics of several bichromophoric dipeptide model compounds and two trichromophoric 15-residue peptides have been studied by a combination of absorption, fluorescence, phosphorescence and laser flash photolysis. Intramolecular singlet-singlet energy transfer (SSET) occurs efficiently within these systems. Trichromophore 14 undergoes intramolecular SSET from the central chromophore to the termini, kSSET = 5.8 x109 s-1 , with a five fold increase over 13, kSSET = 1.1 x 109 s-1 . Evaluation of SSET mechanisms via the Förster treatment and molecular modeling indicates that the dipole-induced dipole mechanism is sufficient to account for the observed SSET. However, given the close distances of the chromophores (~10 Å), an electron exchange mechanism can not be ruled out. Low-temperature phosphorescence in 1:1 methanol/ethanol and room-temperature laser flash photolysis in acetonitrile results indicate that intramolecular triplet-triplet energy transfer (TTET) is efficient in dipeptides 7,9-12 and proceeds with a rate constant of kTTET > 5 x 10 8 s-1. The occurrence of TTET in dipeptide 8, (biphenyl-naphthalene), could not be confirmed due to the fact that SSET from biphenyl to the naphthalene moiety was 26 times greater than kISC. Thus nearly all absorbed light was funneled directly the to the singlet manifold of the naphthalene moiety. TTET in the trichromophores could not be fully evaluated due to their low solubility. However, it is shown from 77°K experiments that kTTET is at least 2.2 x 102 and 2.6 x 102 s-1 for 13 and 14 respectively."
418

Studies of functional boron dipyrromethene derivatives.

January 2013 (has links)
氟硼熒二吡咯染料是一類多功能的熒光材料,並得到了廣泛的應用。本論文的目標是探索此類染料以及它的氮雜類似物作為探測重金屬離子的熒光探針,非線性光學材料和構建人工光合作用模型的潛力。 本論文報導了一系列氟硼熒二吡咯染料和它的氮雜類似物的分子設計,合成,光學性質以及在相關領域的應用。 / 第一章簡單的概述了氟硼熒二吡咯染料的合成,光學性質和作為重金屬熒光探針和非線性光學材料的應用。然後詳細概述了氮雜氟硼熒二吡咯染料的發展,合成,光學性質,以及其在生物醫藥和材料科學領域的潛在應用。 / 第二章報導了一個對銅和汞二價離子具有高選擇性比色性識別的近紅外熒光探針。 這個探針以雙邊苯乙烯修飾的氟硼熒二吡咯染料為螢光團,並進一步修飾兩個二(三唑)胺的識別位點。在體積比為1 比1 的乙腈水溶液中,當加入銅和汞二價離子時,這個探針的吸收和熒光波長表現出不同程度的藍移,而且這個變化可以被肉眼觀察到。這是因為分子內的電荷傳遞過程被抑制的結果。另外,通過其熒光變化的工作曲線法,銅二價離子與此探針具有2 比1 的結合比例。進一步研究表明它們表現出較大的結合常數((6.2 ± 0.6) × 10⁹ M⁻²),是汞二價離子的結合常數的六倍。 / 另外,除了分子內電荷傳遞的機理,光致電子轉移和熒光共振能量傳遞也是兩種常用的設計熒光探針的機理。第三章報導了兩個基於光致電子轉移和熒光共振能量傳遞的有高效選擇性的汞二價離子熒光探針。 我們使用電子吸收和熒光光譜的方法研究了他們之間的結合性能。其中一個探針在中間的位置連接了一個二(三唑)胺的結合位點,並對汞二價離子表現出很高的响應性。另一個探針進一步引入了兩個羅丹明熒光團到氟硼熒二吡咯染料上,於是當接觸到汞二價離子時,激發的氟硼熒二吡咯染料的能量將高效的傳遞到羅丹明上,從而表現出顯著的光譜的變化。 / 第四章描述了一系列含有兩個電子供體和推拉結構的氟硼熒以及氮雜氟硼熒二吡咯染料的設計,合成,以及作為非線性光學材料的潛力。通過薗頭偶合反應,兩個對位二苯胺基苯乙炔基或對位二甲氨基苯乙炔基被連接到了該染料的2 和6 位上。線性的吸收和熒光研究表明那些化合物表現出溶劑效應。 它們在甲苯中雙光子吸收的性能通過用雙光子激發熒光光譜的方法進行了研究。另外,對於推拉電子的一系類化合物,推電子的對位二甲氨基苯乙炔基和拉電子的對位硝基苯乙炔基分別連接到了該染料的2 和6 位上。這些化合物的光學和電化學性能得到了詳細的研究。在氯仿溶液中,它們的二價非線性光學性質通過電場誘導的二次諧波的方法進行了研究,其在1907 納米的標量積μ.β在94 ×10⁻⁴⁸ 到330 × 10⁻⁴⁸ esu 之間,並隨著3 和5 位取代基的不同而變化。 / 第五章報導了一個基於單邊苯乙烯氟硼熒二吡咯染料和富勒烯雙修飾的氮雜氟硼熒二吡咯染料的人工光合作用模型。這個三元體系的分子內光誘導的過程使用穩態的光學方法進行了研究。當激發單邊苯乙烯氟硼熒二吡咯染料部分時,這個被激發的部分會將能量傳遞給氮雜氟硼熒二吡咯染料,然後進一步的將電子傳遞給富勒烯。運用飛秒瞬態鐳射的方法,它們之間在苯睛中電子重排的速率是7.00 × 10⁸ s⁻¹,從而得到電荷分離態的壽命是1.47 納秒。 / 作為上一個工作的拓展,第六章報導了兩個或四個甲基化環糊精修飾的氮雜氟硼熒二吡咯染料與四磺酸基卟啉和其鋅卟啉,以及兩個帶正電的單邊苯乙烯修飾的氟硼熒二吡咯染料在水中的相互作用。使用各種光學方法,我們研究了它們的結合過程以及能量或者電子的傳遞過程。最後,四磺酸基卟啉, 環糊精修飾的氮雜氟硼熒二吡咯染料,以及單邊修飾的氟硼熒二吡咯染料在水溶液中進行了自組裝。當激發卟啉時,能量高效的傳遞到氮雜氟硼熒二吡咯染料上,接著電子從單邊修飾的氟硼熒染料傳遞到氮雜氟硼熒二吡咯染料上。因此,這個多重的超分子體系是一個很好的光合作用模型。 / 第七章和第八章分別闡述了前面幾章的實驗部分和引用文獻。 / 論文的最後一部分附上了所有新化合物的核磁共振氫譜和碳譜圖。 / Boron dipyrromethenes (BODIPYs) are versatile functional materials for a wide range of applications. This research work aims to explore the potential of these compounds and their aza analogues as fluorescent probes for heavy metal ions, nonlinear optical materials, and building blocks of artificial photosynthetic models. This thesis describes the molecular design, synthesis, spectroscopic characterization, and photophysical properties of several series of BODIPYs and aza-BODIPYs, as well as their potential applications in these areas. / Chapter 1 gives a brief overview of BODIPYs, focusing on their synthesis, spectroscopic properties, and applications as fluorescent probes for heavy metal ions and nonlinear optical materials. It then reviews the historical development, syntheses, and spectroscopic properties of their aza analogues. The potential applications of aza-BODIPYs in biomedicine and materials science are also discussed at the end of this chapter. / In Chapter 2, a highly selective colorimetric and near-infrared fluorescent probe for Cu²⁺ and Hg²⁺ ions is reported, which is based on a distyryl BODIPY with two bis(1,2,3-triazole)amino receptors. The compound selectively binds to Cu²⁺ and Hg²⁺ ions in CH₃CN/H₂O (1:1 v/v) giving remarkably blue-shifted electronic absorption and fluorescence bands as a result of inhibition of the intramolecular charge transfer (ICT) process upon binding. The color changes can be easily seen by the naked eye. The binding stoichiometry between this probe and Cu²⁺ ion has been determined to be 1:2 by a Job’s plot of the fluorescence data with a binding constant of (6.2 ± 0.6) × 10⁹ M⁻². The corresponding value for Hg²⁺ ion is about six-fold smaller. / In addition to the ICT mechanism, photoinduced electron transfer (PET) and fluorescence resonance energy transfer (FRET) are another two useful mechanisms for design of fluorescent probes. Chapter 3 reports two highly selective and sensitive BODIPY-based fluorescent probes for Hg²⁺ ion based on PET and FRET mechanisms. Their binding properties have been investigated by using electronic absorption and steady-state fluorescence spectroscopic methods. The probe with a bis(1,2,3-triazole)amino receptor at the meso position is highly responsive toward Hg²⁺ ion. By introducing two rhodamine B moieties to the BODIPY core, FRET occurs from the excited BODIPY to rhodamine B in a highly effective manner upon binding to Hg²⁺ ion, regarding to remarkable spectral changes. / Chapter 4 presents a series of BODIPY and aza-BODIPY derivatives bearing a donor-π-donor or push-pull structure as nonlinear optical materials. The donor-π-donor derivatives have been prepared by connecting 4-(diphenylamino)phenylethynyl or 4-(dimethylamino)phenylethynyl moieties to the 2- and 6-positions of the π systems through Sonogashira coupling reactions. The linear optical absorption and fluorescence properties of these compounds have been found to be solvent-dependent. Their two-photon absorption properties have also been measured in toluene by two-photon fluorescence excitation method. For the push-pull series, an electron-donating 4-(dimethylamino)phenylethynyl group and an electron-withdrawing 4-nitrophenylethynyl group have been added to the 2- and 6-positions of the BODIPY core. The spectroscopic and electrochemical properties of these compounds have been studied. Their second-order nonlinear optical properties have also been examined by electric-field-induced second-harmonic generation method in CHCl₃. The values of the dot product μ.β are in the range from 94 × 10⁻⁴⁸ to 330 × 10⁻⁴⁸ esu at 1907 nm, depending on the substituents at the 3- and 5-positions. / Chapter 5 describes the synthesis and characterization of an artificial photosynthetic model in which an aza-BODIPY core is covalently linked to a monostyryl BODIPY component and a fullerene (C₆₀) unit. The photoinduced intramolecular processes of this triad and the model compounds have been studied in detail by steady-state and time-resolved spectroscopic methods. Upon excitation at the monostyryl BODIPY moiety, excitation energy transfer occurs to the aza-BODIPY core, which is followed by an electron transfer to the C₆₀ unit. From the femtosecond transient absorption studies, the rate constant of charge recombination has been determined to be 7.00 × 10⁸ s⁻¹ in benzonitrile, giving a lifetime of 1.47 ns for the charge-separated state. / As an extension, Chapter 6 presents related supramolecular systems in which an aza-BODIPY derivative bearing two or four permethylated β-cyclodextrin moieties binds to metal-free and zinc(II) tetrasulfonated porphyrins, as well as two cationic monostyryl BODIPYs in water. The complexation of these components has been studied by various spectroscopic methods. The resulting host-guest complexes exhibit efficient energy and/or electron transfer depending on the nature of the guests. A novel mixed array of metal-free porphyrin, aza-BODIPY, and monostyryl BODIPY has also been assembled. Upon excitation at the porphyrin unit, singlet-singlet energy transfer occurs to the aza-BODIPY core, which then obtains an electron from the monostyryl BODIPY moieties. This supramolecular hetero-array thus also serves as an artificial photosynthetic model. / Chaper 7 gives the experimental details for the work described in the preceedingchapters. All the references cited herein are given in Chapter 8. / ¹H and ¹³C{¹H} NMR spectra of all the new compounds are given in the Appendix. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Shi, Wenjing. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 204-220). / Abstracts also in Chinese. / Table of Contents --- p.I / Acknowledgment --- p.VII / Abstract --- p.IX / Abstract (in Chinese) --- p.XIII / Abbreviations --- p.XV / List of Figures --- p.XXI / List of Tables --- p.XXXII / List of Schemes --- p.XXXIV / Publication Related to This Thesis --- p.XXXVI / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- General --- p.1 / Chapter 1.2 --- Synthesis, Reactivity, and Spectroscopic Properties of BODIPYs --- p.2 / Chapter 1.2.1 --- Synthesis of BODIPYs --- p.2 / Chapter 1.2.2 --- Reactivity of BODIPYs --- p.5 / Chapter 1.2.3 --- Spectroscopic Properties of Selected BODIPYs --- p.6 / Chapter 1.3 --- Applications of BODIPYs --- p.9 / Chapter 1.3.1 --- BODIPYs as Fluorescent Probes for Heavy Metal Ions --- p.9 / Chapter 1.3.2 --- BODIPYs as Two-Photon Absorbing Materials --- p.14 / Chapter 1.3.2.1 --- General for Two-Photon Absorption --- p.14 / Chapter 1.3.2.2 --- Selected Examples of TPA Materials --- p.15 / Chapter 1.4 --- Aza-BODIPYs: Aza Analogues of BODIPYs --- p.18 / Chapter 1.4.1 --- General --- p.18 / Chapter 1.4.2 --- Synthesis and Reactivity of Aza-BODIPYs --- p.18 / Chapter 1.4.3 --- Spectroscopic Properties of Aza-BODIPYs --- p.21 / Chapter 1.4.4 --- Applications of Aza-BODIPYs --- p.29 / Chapter 1.4.4.1 --- Aza-BODIPYs as Artificial Photosynthetic Models --- p.29 / Chapter 1.4.4.2 --- Aza-BODIPYs as Fluorescent Probes --- p.33 / Chapter 1.4.4.3 --- Aza-BODIPYs as Photosensitizers and Imaging Probes --- p.37 / Chapter 1.4.4.4 --- Other Applications --- p.39 / Chapter 1.5 --- Objectives of this Study --- p.41 / Chapter Chapter 2 --- A Highly Selective Colorimetric and Fluorescent Probe for Cu²⁺ and Hg²⁺ Ions Based on a Distyryl BODIPY with Two Bis(1,2,3-triazole)amino Receptors / Chapter 2.1 --- Introduction --- p.42 / Chapter 2.2 --- Results and Discussion --- p.43 / Chapter 2.2.1 --- Synthesis and Characterization --- p.43 / Chapter 2.2.2 --- Metal Sensing Properties --- p.46 / Chapter 2.2.3 --- Binding Properties --- p.48 / Chapter 2.2.3.1 --- Binding Properties of 2.10 with Cu²⁺ Ion --- p.48 / Chapter 2.2.3.2 --- Binding Properties of 2.10 with Hg²⁺ Ion --- p.52 / Chapter 2.3 --- Conclusion --- p.55 / Chapter Chapter 3 --- Detection of Hg²⁺ Ion with BODIPY-Based Fluorescent Probes Substituted with a Bis(1,2,3-triazole)amino Receptor / Chapter 3.1 --- Introduction --- p.56 / Chapter 3.2 --- Results and Discussion --- p.57 / Chapter 3.2.1 --- Molecular Design, Synthesis, and Characterization --- p.58 / Chapter 3.2.2 --- Metal Binding Properties of 3.6 --- p.61 / Chapter 3.2.3 --- Metal Binding Properties of 3.7 --- p.66 / Chapter 3.2.4 --- Fluorescence Resonance Energy Transfer in 3.7 --- p.72 / Chapter 3.3 --- Conclusion --- p.73 / Chapter Chapter 4 --- Synthesis and Nonlinear Optical Properties of BODIPY and Aza-BODIPY Derivatives / Chapter 4.1 --- Introduction --- p.74 / Chapter 4.2 --- Results and Discussion --- p.75 / Chapter 4.2.1 --- Synthesis of D-π-D BODIPY and Aza-BODIPY Derivatives --- p.75 / Chapter 4.2.2 --- Synthesis of Push-Pull BODIPY Derivatives --- p.81 / Chapter 4.2.3 --- Linear Electronic Absorption and Fluorescence Properties of D-π-D BODIPY and Aza-BODIPY Derivatives --- p.84 / Chapter 4.2.4 --- Electrochemical Properties of D-π-D BODIPY Derivatives --- p.88 / Chapter 4.2.5 --- Two-Photon Absorption Properties of D-π-D BODIPY and Aza-BODIPY Derivatives --- p.90 / Chapter 4.2.6 --- Linear Electronic Absorption and Fluorescence Properties of Push-Pull BODIPY Derivatives --- p.93 / Chapter 4.2.7 --- Electrochemical Properties of Push-Pull BODIPY Derivatives --- p.96 / Chapter 4.2.8 --- Second-Order Nonlinear Optical Properties of Push-Pull BODIPY Derivatives --- p.97 / Chapter 4.3 --- Conclusion --- p.99 / Chapter Chapter 5 --- Photosynthetic Antenna-Reaction Center Mimicry with a Covalently Linked Monostyryl Boron Dipyrromethene-Aza Boron Dipyrromethene-C₆₀ Triad / Chapter 5.1 --- Introduction --- p.101 / Chapter 5.2 --- Results and Discussion --- p.103 / Chapter 5.2.1 --- Synthesis --- p.103 / Chapter 5.2.2 --- Steady-State Electronic Absorption and Fluorescence Properties --- p.105 / Chapter 5.2.3 --- Electrochemical Properties and Energy Levels --- p.109 / Chapter 5.2.4 --- Transient Absorption Studies --- p.112 / Chapter 5.2.4.1 --- Femtosecond Transient Absorption Studies --- p.112 / Chapter 5.2.4.2 --- Nanosecond Transient Absorption Studies --- p.117 / Chapter 5.2.5 --- Energy-Level Diagrams --- p.119 / Chapter 5.3 --- Conclusion --- p.121 / Chapter Chapter 6 --- Formation and Photoinduced Processes of the Host-Guest Complexes of β-Cyclodextrin-Conjugated Aza-BODIPYs with Tetrasulfonated Porphyrins and Monostyryl BODIPYs / Chapter 6.1 --- Introduction --- p.122 / Chapter 6.2 --- Results and Discussion --- p.123 / Chapter 6.2.1 --- Synthesis and Characterization --- p.123 / Chapter 6.2.2 --- Host-Guest Complexes of 6.3 with Tetrasulfonated Porphyrins --- p.131 / Chapter 6.2.3 --- Host-Guest Complexes of 6.7 with Tetrasulfonated Porphyrins --- p.141 / Chapter 6.2.4 --- Host-Guest Complexes of 6.7 with Monostyryl BODIPYs --- p.146 / Chapter 6.2.5 --- Host-Guest Complexes of 6.7 with Tetrasulfonated Porphyrins and Monostyryl BODIPYs --- p.154 / Chapter 6.3 --- Conclusion --- p.159 / Chapter Chapter 7 --- Experimental Section / Chapter 7.1 --- General --- p.160 / Chapter 7.2 --- Experiments in Chapter 2 --- p.162 / Chapter 7.2.1 --- Synthesis --- p.162 / Chapter 7.2.2 --- Absorption and Fluorescence Studies --- p.164 / Chapter 7.2.3 --- Determination of Binding Constants (K) --- p.165 / Chapter 7.3 --- Experiments in Chapter 3 --- p.165 / Chapter 7.3.1 --- Synthesis --- p.165 / Chapter 7.3.2 --- Absorption and Fluorescence Studies --- p.169 / Chapter 7.3.3 --- Determination of Binding Constants (K) --- p.169 / Chapter 7.4 --- Experiments in Chapter 4 --- p.170 / Chapter 7.4.1 --- Synthesis --- p.170 / Chapter 7.4.2 --- Electrochemical Measurements --- p.188 / Chapter 7.4.3 --- NLO Measurements --- p.188 / Chapter 7.5 --- Experiments in Chapter 5 --- p.190 / Chapter 7.5.1 --- Synthesis --- p.190 / Chapter 7.5.2 --- Electrochemical Measurements --- p.196 / Chapter 7.5.3 --- Time-Resolved Transient Absorption Measurements --- p.196 / Chapter 7.6 --- Experiments in Chapter 6 --- p.198 / Chapter 7.6.1 --- Synthesis --- p.198 / Chapter 7.6.2 --- Determination of Binding Constants (K) --- p.201 / Chapter 7.6.3 --- Molecular Dynamic Simulation --- p.202 / Chapter 7.6.4 --- Electrochemical Measurements --- p.203 / Chapter Chapter 8 --- References --- p.204 / Appendix --- p.221
419

Photodechlorination of pentachlorobenzene in organo-clay

Yoo, Hye-Dong 19 October 1994 (has links)
Graduation date: 1995
420

Persistence and fate of acidic hydrocarbons in aquatic environments : naphthenic acids and resin acids

McMartin, Dena Wynn 09 January 2004
The novel application of combination, or two stage, photochemical and microbial degradation systems for removal of resin acids from natural river water and single stage photolysis for degradation of naphthenic acids in natural river water was investigated. The organic compounds included in this project comprise naphthenic acid model compounds and mixtures as well as four resin acids. Naphthenic acids are crude oil-derived and accumulate to significant concentrations (>100 mg/L) in tailings pond water at oil sands extraction facilities. Resin acids are pulp and paper mill-derived compounds that tend to persist at low levels in receiving waters. For each compound group, analytical methods utilizing liquid chromatography negative ion electrospray ionization mass spectrometry (LC/ESI/MS) were developed. The main hurdle to developing analytical methods for the naphthenic acids and resin acids are related to their polarity, complexity, and lack of available standards for the various individual components. As well, co-extractives, such as humic and fulvic acids, tend to interfere with the detection of naphthenic acids in aquatic samples (Headley et al., 2002a). Resin acid mixtures are not as complex as the naphthenic acids, although each group of hydrocarbon acids may include several isomeric compounds. The application of photochemical degradation prior to biodegradation was proven to be effective here for rapid degradation of the resin acids. In general, the resin acid precursors were more susceptible to the photolysis than were the naphthenic acids. Through thermal maturation and increased complexity, the naphthenic acids seemingly become more resistant to degradation, as evidenced by their commercial use as anti-microbial agents and the observed resistance to photolysis noted in this research. The results of this research may be significant for the design of staged treatment for reduced microbial shock loading and increased bioavailability (defined here as the ability of microbial organisms to degrade the target contaminants) in both bioremediation systems and receiving waters. Specifically, four selected pulp and paper mill-associated resin acids were exposed to several ultraviolet/visible (UV/vis) spectrum radiation sources in water collected from the River Saale in Germany. Background resin acid concentrations were observed in water collected in 2001 and 2002 from various locations along the well-forested River Saale and a manuscript detailing these results published. Analyses of water samples collected in the pulp and paper milling region of the river (in the state of Thuringia) indicated that resin acids persist through biodegradation treatment systems and for several hundred kilometres downstream. All four resin acids were degraded by facile photochemical and microbial degradation with pseudo-first-order kinetics. Half-life values were in the ranges of 18 to 200 minutes for photolysis applications, 8 to 40 hours for biodegradation applications and 3 to 25 hours for two-stage photochemical-microbial degradation processes, in which photolysis was limited to three hours. From these results, it was shown conclusively that photolysis pre-treatment is a viable and efficient method for reducing both resin acid concentrations and the associated acute toxicity. The naphthenic acids investigated in this study were not effectively degraded via UV/vis radiation, including UV-A/UV-B radiation between 300-400 nm, near-monochromatic UV254-radiation, full spectrum artificial solar radiation and natural sunlight. The photochemical degradation potential of three model naphthenic acid compounds and three naphthenic acid mixtures (one extract from the Athabasca Oil Sands and two commercial mixtures) were examined in Athabasca River water. Photolysis at UV254 was the most successful degradation source in all instances, although most naphthenic acids were not significantly degraded by any of the radiation sources. Therefore, it was determined that photolysis is not likely to contribute significantly to environmental degradation and attenuation in the aquatic ecosystem. The results observed from the various naphthenic acids photodegradation processes, coupled with their low affinity for adsorption to soils, reveal that naphthenic acids are likely to persist in the water column. However, UV/vis radiation is capable of significantly changing the composition of mixtures in the aquatic ecosystem, but not reducing overall naphthenic acid concentrations. This may not be a beneficial as there is the potential for increased toxicity toward the lower molecular weight naphthenic acids.

Page generated in 0.0331 seconds