• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 10
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Serum and Glucocorticoid-Regulated Kinase Signaling in Breast Cancer

Gasser, Jessica Ann 04 February 2015 (has links)
Oncogenic activating mutations in PIK3CA, the gene encoding the catalytic subunit of phosphoinositide 3-kinase (PI 3-K), are highly prevalent in breast cancer. The protein kinase Akt is considered to be the primary effector of PIK3CA, though the mechanisms by which PI 3-K mediates tumorigenic signals in an Akt-independent manner remain obscure. My studies show that the serum and glucocorticoid-regulated kinases (SGKs) can function as effectors of PI 3-kinase and transduce signals to phenotypes associated with malignancy. We show that SGK3 is amplified in breast cancer and identify the mechanism by which SGK3 is activated downstream of PIK3CA, specifically through the catalytic activity of the phosphoinositide phosphatase INPP4B. Expression of INPP4B promotes SGK3 activation and in turn inhibits Akt phosphorylation. In breast cancer cell lines with elevated levels of INPP4B, SGK3 is required for proliferation in 3D and also for invasive migration. SGK3 phenotypes are in part mediated by phosphorylation of the substrate protein N-myc downstream regulated 1 (NDRG1), an established metastasis suppressor. The phosphorylation of NDRG1 leads to recruitment by F-box and WD repeat domain-containing 7 (FBW7), the substrate recognition domain of the Skp, Cullin, F-box containing (SCF) complex. Binding of Fbw7 to NDRG1 promotes its polyubiquitination and subsequent degradation by the 26S proteasome. By contrast, our studies also show that the related SGK1 isoform is polyubiquitinated by the functional E3 ubiquitin ligase Rictor-Cullin-1 complex, leading to SGK1 degradation. Proteasomal degradation of SGK1 by Rictor-Cullin-1is the first identified mTORC2-independent function of the Rictor protein. Moreover, the deregulation of SGK1 ubiquitination highlights a mechanism of SGK1 overexpression in breast cancers.
12

Study of the role of DNA methylation and PIK3CA mutations in human breast cancer

Li, Shao Ying January 2006 (has links)
[Truncated abstract] Introduction: Breast cancer is a heterogeneous disease, resulting in very different outcomes for women with apparently similar tumour characteristics. In order for patients to have optimal treatment, a better understanding of the molecular nature of their disease is required. Aims: The aims of this thesis were: 1) To determine whether methylation of RARβ2, ER, CDH1, BRCA1, CCND2, p16 and TWIST genes are associated with phenotypic features of breast cancer and the prognostic significance of methylation of these genes. 2) To investigate for possible associations between the frequency of methylation at RARβ2, CDH1, ER, BRCA1, CCND2, p16 and TWIST genes and the presence of germ-line variants in the TS, MTHFR, MS, CBS, MTHFD1 and DNMT3B genes, as well as for possible correlations between these polymorphisms and clincopathological features of breast cancer including patient outcome. 3) To determine whether PIK3CA mutations determined clinical phenotype and the prognostic significance of PIK3CA mutations in a large and well characterized cohort of breast cancer patients. Methods: A large and well characterized series of primary breast tumours were selected for methylation of RARβ2, ER, CDH1, BRCA1, CCND2, p16 and TWIST genes using MSP, and for polymorphisms in TS, MTHFR, MS, CBS, MTHFD1 and DNMT3B genes using PCR, PCR-RFLP and PCR-SSCP. Mutations to PIK3CA were detected using F-SSCP. Results and Conclusions: Methylation frequencies ranged from 11% for CCND2 to 84% for ER. More frequent hypermethylation was observed in tumours with poor histological differentiation compared to those with well/moderate differentiation, as well as trends for association with larger tumour size and mutant TP53. Tumours with ER and CDH1 methylation were associated with significantly lower hormone receptor levels, younger age at diagnosis and the presence of mutant p53. TWIST methylation is firstly reported to be associated with significantly older patient age at diagnosis and larger tumour size. Our data suggests that gene methylation may be linked to various pathological features of breast cancer. However, there appears to be little support for a distinctive CpG island methylator phenotype in breast cancer.

Page generated in 0.0133 seconds