1 |
The non-destructive testing of model piles using a resonant vibration techniqueLilley, D. M. January 1982 (has links)
No description available.
|
2 |
The effect of limited site investigations on the design and performance of pile foundations.Arsyad, Ardy January 2009 (has links)
The research presented in this thesis focuses on the quantification of the effect of limited site investigations on the design and performance of pile foundations. Limited site investigation is one of the main causes of structural foundation failures. Over the last 30 years, most site investigations conducted for infrastructure projects have been dictated by minimum cost and time of completion, rather than meeting the need to appropriately characterise soil properties (Institution of Civil Engineers 1991; Jaksa et al. 2003). As a result, limited site investigations remain common, resulting in a higher risk of structural foundation failure, unforeseen additional construction, and/or repair costs. Also, limited site investigations can result in over-designing foundations, leading to increased and unnecessary cost (ASFE 1996). Based on the reliability examination method for site investigations introduced by Jaksa et al. (2003) and performed by Goldsworthy (2006), this research investigated the effect of limited site investigations on the design of pile foundations. This was achieved by generating three-dimensional random fields to obtain a virtual site consisting of soil properties at certain levels of variability, and by simulating various numbers of cone penetration tests (CPTs) and pile foundations on the generated site. Once the site and the CPTs were simulated, the cone tip resistance (qc) was profiled along the vertical and horizontal axes. The simulated qc profiles yielded by the CPTs were then used to compute axial pile load capacity termed the pile foundation design based on site investigations (SI). In parallel, the axial pile load capacity of the simulated pile foundation utilising the “true” cone tip resistance along the simulated pile was also determined. This is termed “the true” design, or the benchmark pile foundation design, and referred to as pile foundation design based on complete knowledge (CK). At the end of this process, the research compared the pile foundation designs based on SI and those based on CK. The reliability of the foundation design based on SI was analysed with a probabilistic approach, using the Monte Carlo technique. The results indicated that limited site investigations have a significant impact on the design of pile foundations. The results showed that minimum sampling efforts result in a high risk of over- or under-designing piles. More intensive sampling efforts, in contrast, led to a low risk of under- or over-design. The results also indicated that the levels of spatial variability of the soil are notable factors that affect the effectiveness of site investigations. These results will assist geotechnical engineers in planning a site investigation in a more rational manner with knowledge of the associated risks. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1375097 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Civil, Environmental and Mining Engineering, 2009
|
3 |
The effect of limited site investigations on the design and performance of pile foundations.Arsyad, Ardy January 2009 (has links)
The research presented in this thesis focuses on the quantification of the effect of limited site investigations on the design and performance of pile foundations. Limited site investigation is one of the main causes of structural foundation failures. Over the last 30 years, most site investigations conducted for infrastructure projects have been dictated by minimum cost and time of completion, rather than meeting the need to appropriately characterise soil properties (Institution of Civil Engineers 1991; Jaksa et al. 2003). As a result, limited site investigations remain common, resulting in a higher risk of structural foundation failure, unforeseen additional construction, and/or repair costs. Also, limited site investigations can result in over-designing foundations, leading to increased and unnecessary cost (ASFE 1996). Based on the reliability examination method for site investigations introduced by Jaksa et al. (2003) and performed by Goldsworthy (2006), this research investigated the effect of limited site investigations on the design of pile foundations. This was achieved by generating three-dimensional random fields to obtain a virtual site consisting of soil properties at certain levels of variability, and by simulating various numbers of cone penetration tests (CPTs) and pile foundations on the generated site. Once the site and the CPTs were simulated, the cone tip resistance (qc) was profiled along the vertical and horizontal axes. The simulated qc profiles yielded by the CPTs were then used to compute axial pile load capacity termed the pile foundation design based on site investigations (SI). In parallel, the axial pile load capacity of the simulated pile foundation utilising the “true” cone tip resistance along the simulated pile was also determined. This is termed “the true” design, or the benchmark pile foundation design, and referred to as pile foundation design based on complete knowledge (CK). At the end of this process, the research compared the pile foundation designs based on SI and those based on CK. The reliability of the foundation design based on SI was analysed with a probabilistic approach, using the Monte Carlo technique. The results indicated that limited site investigations have a significant impact on the design of pile foundations. The results showed that minimum sampling efforts result in a high risk of over- or under-designing piles. More intensive sampling efforts, in contrast, led to a low risk of under- or over-design. The results also indicated that the levels of spatial variability of the soil are notable factors that affect the effectiveness of site investigations. These results will assist geotechnical engineers in planning a site investigation in a more rational manner with knowledge of the associated risks. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1375097 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Civil, Environmental and Mining Engineering, 2009
|
4 |
Static axial pile foundation response using seismic piezocone dataNiazi, Fawad Sulaman 27 August 2014 (has links)
Ever since the use of cone penetration testing (CPT) in geotechnical site investigations, efforts have been made to correlate its readings with the components of static axial pile capacity: unit base resistance (qb) and unit shaft resistance (fp). Broadly, the pile capacity analysis from CPT data can be accomplished via two main approaches: rational (or indirect) methods, and direct methods. The rational methods require a two-step approach, whereby CPT data are first used to provide assessments of geoparameters that are further utilized as input values within a selected analytical framework to enable the evaluation of the pile capacity components. In contrast, direct CPT methods use the measured penetrometer readings by scaling relationships or algorithms in a single-step process to obtain fp and qb for full-size piling foundations. The evolution of the CPT from mechanical to electrical to electronic versions and single-channel readings (i.e., measured tip resistance, qc) to the piezocone penetration test (CPTu), that provides three readings of point stress (qt), sleeve friction (fs), and porewater pressure (u1 or u2), has resulted in the concurrent development of multiple CPT-based geotechnical pile design methods. It is noted, however, that current CPT-based methods focus only on an estimate of "axial pile capacity", corresponding to a limiting load or force at full mobilization.
A more comprehensive approach is sought herein utilizing the CPT readings towards producing a complete nonlinear load-displacement-capacity (Q-w-Qcap) on axial pile response. In particular, the seismic cone penetration test (SCPT) provides the profile of shear wave velocity (Vs) that determines the fundamental small-strain shear modulus: Gmax = gt?Vs2, where gt = total mass density of soil. With the penetrometer readings useful in assessing foundation capacity, the stiffness Gmax finds application within elastic continuum solutions towards evaluating the load-displacement (Q-w) response.
In this study, a concise review of the deep foundation systems is presented, including pile types and characteristics, various arrangements of axial pile load testing in static mode, and interpretations of the load test data. In addition a comprehensive state-of-the-art review of CPT-based rational and direct methods of pile capacity evaluations is compiled. It is recognized that the direct methods offer more convenience in their straightforward approach in estimation of the pile capacity. The piezocone-based UniCone direct method proposed by Eslami and Fellenius (1997) is selected for further refinements, as it utilizes all three CPT readings in its design formulations. Concerning the analysis of pile deformations under axial loading, a brief review covers designs employing empirical formulations, analytical solutions, load-transfer (t-z) methods, numerical simulations, variational approaches, and those using hybrid methods. Specifically, the analytical elastic solution by Randolph and Wroth (1978; 1979) is covered in more detail since it is simple and convenient in application with extended applications to uplift and bidirectional O-cell types of loadings. This elastic approach also serves well in modeling a stacked pile solution for layered soil profiles. The last part of the review covers various shear modulus reduction schemes, since evaluation of the applicable stiffnesses is considered to be the most delicate phase in the nonlinear Q-w response analysis of axially loaded piles. It is identified that the most appropriate scheme applicable to static axial loading of pile foundations is the one that can be derived from the back-analyses of actual load tests within the framework of analytical elastic solution.
In order to conduct a comprehensive research study on the axial Q-w-Qcap response of deep foundations from CPT readings, a large database is compiled. This includes 330 case records of pile load tests at 70 sites from 5 continents and 19 different countries of the world, where pile foundations were load tested under top-down compression or top-applied uplift (tension) loading, or both, or by bi-directional Osterberg cell setups. All test sites had been investigated using CPT soundings; in most cases by the preferred SCPTu that provides all four readings from the same sounding: qt, fs, u2, and Vs. In a few cases, sites were subjected to CPT or CPTu and the profiles of shear wave velocities were obtained by other field geophysical techniques, otherwise by empirical estimations.
Results of the new correlation efforts are offered to derive coefficients Cse for shaft component and Cte for base component of the axial pile capacity from CPTu data. The UniCone type of soil classification chart is refined by delineating 11 soil sub-zones along with their respective Cse, in contrast to the 5 zones originally proposed. The CPT material index, Ic (Robertson, 2009) is then used to establish direct correlations linking Cse vs. Ic and Cte vs. Ic. Statistical relationships offer continuous functions for estimating the coefficients over a wide range of Ic values, thereby eliminating the need for use of the soil classification chart as well as improving the reliability in the evaluations of fp and qb. The effects of the pile loading direction (compression vs. uplift) and loading rate are also incorporated in the proposed design formulations.
New sets of shear stiffness reduction curves are developed from the back-analysis of pile load tests and Gmax profiles obtained from the SCPT data. Alternative functions formats are provided in terms of hyperbolic tangent expressions or exponential curves, developed as normalized shear stiffness (G/Gmax) vs. logarithm of percent pseudo-strain (gp = w/d, where w = pile displacement and d = pile diameter). These charts offer convenience in the axial Q-w analysis of different pile categories within the framework of analytical elastic solution. The results also account for the plasticity characteristics of the soil formations within the database.
A stacked pile model for Q-w analysis is presented in which certain adaptations are proposed in the elastic continuum solution. These adaptations enable plotting of separate modulus reduction curves (G/Gmax vs. gp) as function of depth for each layer, and treating pile as a stack of smaller pile segments embedded in a multi-layered soil media. The solution can be used to address the question of progressive failure with depth in a multi-layer soil media that exhibits nonlinear soil stiffness response.
Finally, the closed-from analytical elastic pile solution for predicting the Q-w response is decoupled and modified to account for different setup cases and multi-stage loading of bi-directional O-cell tests. The decoupling accounts for separate assessments of the response to axial loading for different segments of pile shaft and different stages of loading, while the modifications include: (1) reduced maximum radius of influence for the upward displacements of the upper shaft segment, and (2) modeling the non-linear ground stiffness from the back-analysis of a well-documented dataset of O-cell load tests.
|
5 |
Consolidation of unsaturated seabed around an inserted pile foundation and its effects on the wave-induced momentary liquefactionSui, T., Zheng, J., Zhang, C., Jeng, D-S., Guo, Yakun, He, R. 07 October 2016 (has links)
Yes / Seabed consolidation state is one of important factors for evaluating the foundation stability of the marine structures. Most previous studies focused on the seabed consolidation around breakwaters standing on the seabed surface. In this study, a numerical model, based on Biot’s poro-elasticity theory, is developed to investigate the unsaturated seabed consolidation around a nearshore pile foundation, in which the pile inserted depth leads to a different stress distribution. Seabed instabilities of shear failure by the pile self-weight and the potential liquefaction under the dynamic wave loading are also examined. Results indicate that (1) the presence of the inserted pile foundation increases the effective stresses below the foundation, while increases and decreases the effective stresses around the pile foundation for small (de/R<=3.3) and large (de/R>3.3) inserted depths, respectively, after seabed consolidation, (2) the aforementioned effects are relatively more significant for small inserted depth, large external loading, and small Young’s modulus, (3) the shear failure mainly occurs around the inserted pile foundation, rather than below the foundation as previously found for the located marine structures, and (4) wave-induced momentary liquefaction near the inserted pile foundation significantly increases with the increase of inserted depth, due to the change of seabed consolidation state. / National Natural Science Foundation for Distinguished Young Scholars (51425901), the National Natural Science Foundation of China (51209082, 51209083), the Natural Science Foundation of Jiangsu Province (BK20161509), the Fundamental Research Funds for the Central Universities (2015B15514), Jiangsu Graduate Research and Innovation Plan Grant (#CXLX11_0450) and the 111 project (B12032).
|
6 |
Properties and applications of polymer support fluids in geotechnical engineeringLam, Carlos January 2011 (has links)
Synthetic polymer fluids have been used as an alternative to conventional bentonite slurries for the excavation of foundation elements over the last two decades. Thus far their use has excited polarised views in the industry – some construction professionals avoid using them after hearing ‘horror stories’ about past failures whereas others believe that they are the future of support fluids because of the many benefits that they can offer. This situation has been found to be mainly due to a lack of understanding of what polymers really are and their properties. To address this issue, the various polymer products currently available in the market have been categorised based on their intended functions, and the fundamental properties of some of them have been characterised. The research showed that significant difference exists between polymers even of the same chemical family. Based on a series of rheological experiments, it was found that the properties of polymer fluids are highly dependent on the governing shear rate, time, and a range of site dependent factors. The research also showed that the current procedure for the interpretation of viscosity data is incorrect. After an analysis of the properties of currently available polymers, the latter part of the thesis describes a field trial carried out at a site in Stratford, East London. The aims of the trial were twofold: to compare the performance between piles constructed using bentonite and polymer fluids, and to assess the effect of extended pile bore open time for pile bores supported by polymers. From the results, it was found that the polymer piles showed much stiffer load–settlement response than the bentonite pile, and that a pile bore open time of up to 26 h had no adverse effect on the pile performance. The load test results have been carefully back-analysed using a range of methods. It was found that, compared to their bentonite counterparts, polymer fluids can improve the interface shearing resistance with Thanet Sand and the shear modulus of the Lambeth clay.
|
7 |
Testing and Evaluation of Confined Polymer Concrete Pile with Carbon Fiber SleeveToufigh, Vahid January 2013 (has links)
The goal of this research is to investigate the behavior of polymer concrete confined with a carbon fiber sleeve used as a pile foundation. To evaluate the behavior of a confined polymer concrete pile in this research, four steps was considered. The first step of this investigation considered the mix design of polymer concrete, polymer concrete is a new material which is a combination of epoxy resin and aggregate. Instead of using a traditional mix of cement and water to make concrete, epoxy resin is used. Three dissimilar varieties of aggregate are mixed with different ratios in order to reach the maximum bulk density to obtain the maximum strength. After discovering the optimum ratio which gives the maximum bulk density, several samples of the aggregate are mixed with different ratios of epoxy resin. Next, the samples are investigated in a compression test to observe which ratios have the maximum strength and this ratio is used for a polymer concrete mix design to create a pile foundation. The pile is a built using a cast in place method and confined with a sleeve of carbon fiber. The second part of this investigation determined the structural mechanical properties of confined polymer concrete pile material. The unconfined and confined polymer concrete was tested in compression to determine compressive strength and stress-strain behavior. Similar tests were conducted on unconfined and confined cement concrete for comparison between these materials. Additional tension tests were conducted on unconfined polymer concrete. Then, a carbon fiber sleeve was tested in compression test to determine tensile strength and tension stress-strain behavior. After these tests, the confined polymer concrete is modeled in the computer program MATTCAD which is used to calculate the theoretical bending moment capacity and load-displacement curve. Finally, the confined polymer concrete is tested with the MTS 311 Load Frame in three point load flexure test to determine the experimentally bending moment capacity, load-displacement curve and compare with theoretical results. Confined polymer concrete was tested in one and two way cyclic loading to observe the ductility behavior of this material as laterally loaded piles and compared with cement concrete results in cyclic loading. The third part of this investigation determined the geotechnical mechanical properties of confined polymer concrete pile material. Cyclic Multi Degree of Freedom (CYMDOF) device was used to determine interface reaction and friction angle between confined polymer concrete and soil with interface shear test theory method. Furthermore, the same device was used to determine the friction angle of soil with direct shear test theory, and compare the friction angle results together. The last part of this investigation considered the behavior of different sized confined polymer concrete pile in different types of soil. A confined polymer concrete pile was modeled into PLAXIS and OPENSEES PL computer software to analysis pile in axial load and lateral load respectively. Furthermore, a cement concrete pile was modeled with similar software and conditions to compare these two materials.
|
8 |
Three-Dimensional Finite Element Analysis of the Pile Foundation Behavior in Unsaturated Expansive SoilWu, Xingyi 22 April 2021 (has links)
Expansive soils, which are widely referred to as problematic soils are extensively found in many countries of the world, especially in semi-arid and arid regions. Several billions of dollars are spent annually for maintenance or for repairs to the structures constructed with and within expansive soils. The major problems of expansive soils can be attributed to the volume changes associated with the alternate wetting and drying conditions due to the influence of environmental factors. Pile foundations have been widely accepted by practicing engineers as a reasonably good solution to reduce the damages to the structures constructed on expansive soils. Typically, piles foundations are extended through the active layer of expansive soil to reach the bedrock or placed on a soil-bearing stratum of good quality. Such a design and construction approach typically facilitates pile foundations to safely carry the loads from the superstructures and reduce the settlement. However, in many scenarios, damages associated with the pile foundations are due to the expansion of the soil that is predominantly in the active zone that contributes to the pile uplift. Such a behavior can be attributed to the water infiltration into the expansive soil, which is a key factor that is associated with the soil swelling. Due to this phenomenon, expansive soil typically moves upward with respect to the pile. This generates extra positive friction on the pile because of the relative deformation. If the superstructure is light or the applied normal stress on the head of the piles is not significant, it is likely that there will be an uplift of the pile contributing to the damage of the superstructure.
In conventional engineering practice, the traditional design methods that include the rigid pile method and the elastic pile method are the most acceptable in pile foundation design. These methods are typically based on a computational technique that uses simplified assumptions with respect to soil and water content profile and the stiffness and shear strength properties. In other words, the traditional design method has limitations, as they do not take account of the complex hydromechanical behavior of the in-situ expansive soils. With the recent developments, it is possible to alleviate these limitations by using numerical modeling techniques such as finite element methods. In this thesis, a three-dimensional finite element method was used to study the hydro-mechanical behavior of a single pile in expansive soils during the infiltration process.
In this thesis, a coupled hydro-mechanical model for the unsaturated expansive soil is implemented into Abaqus software for analysis of the behavior of single piles in expansive soils during water infiltration. A rigorous continuum mechanics based approach in terms of two independent stress state variables; namely, net normal stress and suction are used to form two three-dimensional constitutive surfaces for describing the changes in the void ratio and water content of unsaturated expansive soils. The elasticity parameters for soil structure and water content in unsaturated soil were obtained by differentiating the mathematical equations of constitutive surfaces. The seepage and stress-deformation of expansive soil are described by the coupled hydro-mechanical model and the Darcy’s law. To develop the subroutines, the coupled hydro-mechanical model is transferred into the coupled thermal-mechanical model. Five user-material subroutines are used in this program. The user-defined field subroutine (USDFILD) in Abaqus is used to change and transfer parameters. Three subroutines including user-defined material subroutine (UMAT), user-defined thermal material subroutine (UMATHT), and user-defined thermal expansion subroutine (UEXPAN) are developed and used to calculate the stress-deformation, the hydraulic behavior, and the expansion strain, respectively. Except for the coupled hydro-mechanical model of unsaturated expansive soils, a soil-structure interface model is implemented into the user-defined friction behavior subroutine (FRIC) to calculate the friction between soil and pile. The program is verified by using an experimental study on a single pile in Regina clay. The results show that for the single pile in expansive soil under a vertical load, water infiltration can cause a reduction in the pile shaft friction. More pile head load is transferred to the pile at greater depth, which increases the pile head settlement and pile base resistance. In future, the proposed method can also be extended for verification of other case studies from the literature. In addition, complex scenarios can be investigated to understand the behavior of piles in expansive soils.
|
9 |
Physical Model Testing of Piles in Thawing Soils Subjected to Single and Combined LoadingsSingh, Harshdeep 18 May 2022 (has links)
The primary purpose of pile foundations is to transfer vertical loads due to the transfer of the weight of the superstructure to the deeper ground. However, many civil engineering structures, such as bridges, transmission towers, tall chimneys, and solar panels, are subjected to significant lateral loads and overturning moments in addition to axial loads. Potential sources of lateral loads (not due to earthquakes) include wind, waves, ice forces, passive earth pressure, etc. On the other hand, axial loadings can be live loads from a structure, forces developed due to ground freezing, etc. Consequently, pile foundations for these structures should be adequately designed to resist compressive loads combined with lateral and uplift loads and moments. In most cases, these forces (compressive, lateral, and uplift) and moments are often simultaneously applied on the piles. One of the key objectives for the engineer and designer is to determine the deflections and stresses in a pile in order to keep them within tolerable limits. Passive soil resistance can be very effective in proving lateral support for the pile. However, passive soil resistance is a function of the soil thermal regime (freezing, thawing, and temperature). Due to global warming, the thermal regimes of the soils in Canada and other cold regions in the world have changed in the past decades. The change in the thermal regimes of the soil may affect the geotechnical response or performance of the pile foundations. This thesis presents and discusses the results of physical model testing on model piles in unfrozen, frozen, and thawing fine sand, which are subjected to individual and combined axial (uplift) and lateral loads. The dimensions of the pile model are established by using physical scaling laws. The physical model is also equipped with various sensors and instruments (e.g., linear variable differential transformer (LVDT), and temperature sensors) to monitor the pile and soil response during and after loading. The results of the study show that the thermal regime in the soil significantly affects the performance of the pile under combined loadings (lateral and uplift). The lateral capacity of the pile under combined loads in frozen soil is increased by 648% compared to that in unfrozen ground whereas the uplift capacity under combined loadings in frozen soil is increased by 29%. Due to the effects of the freezing and thawing (F-T) cycles of the soil, a steady increase in the lateral capacity of the pile under the combined loadings is observed. On the other hand, the uplift capacity under the combined loadings in soil subjected to F-T cycles remains constant. The results will be useful in the geotechnical design of pile foundations for bridges and other structures in Canada and other cold regions in the world. The findings of this research will contribute to efficient design practices for pile foundations in cold regions with rapid changing climatic conditions.
|
10 |
Wave-induced seabed residual response and liquefaction around a mono-pile foundation with various embedded depthSui, T., Zhang, C., Jeng, D-S., Guo, Yakun, Zheng, J., Zhang, W., Shi, J. 13 August 2020 (has links)
Yes / Wave-induced seabed instability caused by the residual liquefaction of seabed may threaten the safety of an offshore foundation. Most previous studies have focused on the structure that sits on the seabed surface (e.g., breakwater and pipeline), a few studies investigate the structure embedded into the seabed (e.g. a mono-pile). In this study, by considering the inertial terms of pore fluid and soil skeleton, a three-dimensional (3D) integrated model for the wave-induced seabed residual response around a mono-pile is developed. The model is validated with five experimental tests available in the literature. The proposed model is then applied to investigate the spatial and temporal pattern of pore pressure accumulation as well as the 3D liquefaction zone around a mono-pile. The numerical simulation shows that the residual pore pressure in front of a pile is larger than that at the rear, and the seabed residual response would be underestimated if the inertial terms of pore fluid and soil skeleton are neglected. The result also shows that the maximum residual liquefaction depth will increase with the increase of the embedded depth of the pile. / This work was supported by the Fundamental Research Funds for the Central Universities [2017B15814], the International Postdoctoral Exchange Fellowship Program [20170014], National Science Foundation for Distinguished Young Scholars [Grant No. 51425901], Fundamental Research Funds for the Central Universities (2017B21514), Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province (2018SS02), Natural Science Foundation of Jiangsu Province [Grant No. BK20161509] and Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University [Project No: 2016491011].
|
Page generated in 0.0173 seconds