• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of polarization-independent liquid-crystal Fresnel lenses with high diffraction efficiency

Wang, Jhong-yuan 03 September 2009 (has links)
This study proposes a polarization-independent liquid-crystal Fresnel lens using twisted nematic liquid crystals (TN-LCs) with two electrodes structure. A photoresist type has high diffraction efficiency, high diffraction efficiency and good polarization independence characteristic. However, its diffraction cannot be completely switched off. A patterned electrode type has the characteristics of the switch-off and good polarization independence. However, it has low diffraction efficiency. We improve the patterned electrode type with two electrodes structure. Experimental results reveal that LC Fresnel lens using the TN-LC with two electrode structures has high diffraction efficiency and a good polarization-independent characteristic.
2

Two-port polarization independent electro-optically tunable wavelength filter in lithium niobate

Ping, Yang 30 September 2004 (has links)
Two-port polarization independent electro-optically wavelength tunable filters based on asymmetric Mach-Zehnder structure in LiNbO3 substrate have been developed for 1.55μm application. The operation principle is based on Mach-Zehnder interference and TE↔TM mode conversion. Fabrication parameters for channel waveguides, interferometers and mode converters have been optimized. 7μm wide single mode straight channel waveguides were produced by diffusing 1050-1100A thick Ti into LiNbO3 substrate. Insertion loss of 3.6dB was achieved for both TE and TM polarization. Mach-Zehnder interferometer performance was optimized by testing the Y-branch on samples cut in half length compared to complete device. Best results were obtained from samples that were produced by diffusion at 1025 degC for 11 hours of 1050A thick Ti film, and by diffusion at 1025 degC for 12 hours of 1090A thick Ti film. Metal electrodes were added to one arm of asymmetric Mach-Zehnder interferometers to evaluate electro-optic modulation. Modulation depth as high as 99.6% for TE mode and 98.9% for TM mode were obtained. TE↔TM mode conversion was demonstrated on straight channel waveguides with conversion efficiency greater than 96% utilizing 500 strain inducing SiO2 grating pads with 21μm spatial period. Two-port polarization independent electro-optically tunable wavelength filters were produced based on the optimized parameters described above. The -3dB bandwidth of the filter is 2.4nm. The nearest side lobe to the main peak is more than 13dB below the central lobe for both TE polarization and TM polarization. A thermal tuning rate of -0.765nm/degC is obtained. An electrical tuning range of 12.8nm and a tuning rate of 0.08nm/V were achieved.
3

Studies of polarization-independent Fresnel liquid crystal lens

Huang, Shian-Yi 24 July 2008 (has links)
This study proposes a polarization-independent liquid-crystal Fresnel lens using the twisted nematic liquid crystal (TN-LC). At the high voltage state, the TN-LC behaves as an optically anisotropic material which makes the proposed LC Fresnel lens possess a polarization-insensitive characteristic. Two kinds of LC Fresnel lens, photoresist type and patterned electrodes type, are prepared in our experiment. Experimental results reveal that the photoresist type has a high diffraction efficiency and a good polarization-independent characteristic. However, its diffraction efficiency cannot be switched off. Contrarily, the patterned electrode type has the characteristics of the switch-off and good polarization-independent with a moderate diffraction efficiency
4

Two-port polarization independent electro-optically tunable wavelength filter in lithium niobate

Ping, Yang 30 September 2004 (has links)
Two-port polarization independent electro-optically wavelength tunable filters based on asymmetric Mach-Zehnder structure in LiNbO3 substrate have been developed for 1.55μm application. The operation principle is based on Mach-Zehnder interference and TE↔TM mode conversion. Fabrication parameters for channel waveguides, interferometers and mode converters have been optimized. 7μm wide single mode straight channel waveguides were produced by diffusing 1050-1100A thick Ti into LiNbO3 substrate. Insertion loss of 3.6dB was achieved for both TE and TM polarization. Mach-Zehnder interferometer performance was optimized by testing the Y-branch on samples cut in half length compared to complete device. Best results were obtained from samples that were produced by diffusion at 1025 degC for 11 hours of 1050A thick Ti film, and by diffusion at 1025 degC for 12 hours of 1090A thick Ti film. Metal electrodes were added to one arm of asymmetric Mach-Zehnder interferometers to evaluate electro-optic modulation. Modulation depth as high as 99.6% for TE mode and 98.9% for TM mode were obtained. TE↔TM mode conversion was demonstrated on straight channel waveguides with conversion efficiency greater than 96% utilizing 500 strain inducing SiO2 grating pads with 21μm spatial period. Two-port polarization independent electro-optically tunable wavelength filters were produced based on the optimized parameters described above. The -3dB bandwidth of the filter is 2.4nm. The nearest side lobe to the main peak is more than 13dB below the central lobe for both TE polarization and TM polarization. A thermal tuning rate of -0.765nm/degC is obtained. An electrical tuning range of 12.8nm and a tuning rate of 0.08nm/V were achieved.
5

Polarization independent and Tunable Terahertz Phase Shifter

Lin, Bo-Heng 17 July 2012 (has links)
In this thesis, we propose and demonstrate a simple and precise method for measuring mm scaled cell gap by using terahertz time domain spectroscopy (THz-TDS) system. This method allows us to measure the cell gap from 15mm to 1.5mm. In addition, the accuracy of measured thickness for the proposed method is also discussed and analyzed. Meanwhile, a nematic liquid crystal BL006 with birefringence as high as 0.27 in THz frequency range and its optical properties of cholesteric liquid crystal (CLC) as mixing chiral materials are investigated and reported. The ordinary refractive index and average effective refractive index at 20oC are from 1.52 to 1.56 and from 1.61 to 1.64, respectively, in THz frequency ranging from 0.2 THz to 1.4THz. In addition, we also demonstrate that cell filled with CLC is with polarization independent property for THz radiation. Through the 5mm cell filled CLC with diluted concentration of the dopant chiral material for decreasing the critical voltage, an electric controlled polarization independent phase shifter with the modulation depth exceeding 2pi is demonstrated. Furthermore, we also investigate the driving field dependence of phase retardation and discuss the reliability.
6

Polarization-independent Liquid Crystal Devices

Lin, Yi-Hsin 01 January 2006 (has links)
Liquid crystal (LC) devices can be operated as amplitude modulators and phase modulators. LC amplitude modulation is commonly used in liquid crystal display (LCD) while phase-only modulation is useful for laser beam steering, tunable grating, prism, lens, and other photonic devices. Most LC devices are polarization dependent and require at least one polarizer. As a result, the optical efficiency is low. To enhance display brightness, a power hungry backlight has to be used leading to a high power consumption and short battery life. In a LC phase modulator, the polarization dependent property complicates the laser beam steering system. It is highly desirable to develop new operating mechanisms that are independent of the incident light polarization. In this dissertation, we have developed eight polarization-independent liquid crystal operation principles: three of them are aimed for displays and the other five are for phase modulators. For amplitude modulations, a new polymer-dispersed liquid crystal (PDLC) and two new dye-doped LC gels are polarizer-free by combining light scattering with dye-absorption effects. In phase modulation, we explore five device concepts: PDLC and Polymer-Stabilized Cholesteric Texture (PSCT), homeotropic LC gels, thin polymer film separated double-layered structure, and double-layered LC gels. In the low voltage regime, both PDLC and PSCT have a strong light scattering. However, as the voltage exceeds a certain level, the phase modulation is scattering-free and is independent of polarization. The homeotropic LC gels do not require any biased voltage and the response time is still fast. Although the remaining phase in these devices is small, they are still useful for micro-photonic device applications. To increase the phase change, thin polymer film separated double-layered structure is a solution. The orthogonal arrangement of top and bottom LC directors results in polarization independence. However, the response time is slow. Similarly, double-layered LC gels are not only polarization independent but also fast response due to the established polymer network.
7

Tunable Liquid Crystal Etalon and Photonic Devices

Dorjgotov, Enkh-Amgalan 15 July 2010 (has links)
No description available.

Page generated in 0.0285 seconds